A compact dual-feed wide-band slotted antenna for future wireless applications
Future 5G technology will have a high data rate and capacity as well as low latency in order to suit the needs of applications such as health care monitoring, smart cities, and smart homes. As a result, developing an antenna system with capable of spanning 5G spectrums while providing excellent radi...
Saved in:
Published in | Analog integrated circuits and signal processing Vol. 118; no. 2; pp. 291 - 305 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Future 5G technology will have a high data rate and capacity as well as low latency in order to suit the needs of applications such as health care monitoring, smart cities, and smart homes. As a result, developing an antenna system with capable of spanning 5G spectrums while providing excellent radiating performance is critical. In this study, we suggest an antenna system that covers the 5G spectrum's awaited bandwidth. This article explains a low-profile, wide-band patch antenna with a consistent radiation pattern and polarization. To enhance the bandwidth, the design comprises two symmetrical inverted U slots and a tiny slot in the middle. To eliminate higher even-order modes, the antenna is activated by a differential feed. The suggested antenna achieves an impedance bandwidth of up to 31.3% when printed on a 0.80 mm thick FR4 substrate. The developed antenna has a frequency resonance range of 3.58–4.8 GHz and a reflection coefficient less than − 15 dB. With maximal co-polarization and low cross-polarization, consistent radiation characteristics are attained throughout the whole 1.22 GHz bandwidth. The many parameters that determine antenna performance are investigated and shown. The simulation of the proposed antenna is carried out using Keysight’s Advanced Design System. The constructed antenna is experimentally measured, and the experimental findings correspond well with the predicted results. It has been determined that a thin and compact differentially fed antenna offers improved performance, making it suitable for future 5G cellular applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0925-1030 1573-1979 |
DOI: | 10.1007/s10470-023-02233-0 |