Jacobi polynomials and harmonic weight enumerators of the first-order Reed–Muller codes and the extended Hamming codes

In the present paper, we give harmonic weight enumerators and Jacobi polynomials for the first-order Reed–Muller codes and the extended Hamming codes. As a corollary, we show the nonexistence of combinatorial 4-designs in these codes.

Saved in:
Bibliographic Details
Published inDesigns, codes, and cryptography Vol. 92; no. 4; pp. 1041 - 1049
Main Authors Miezaki, Tsuyoshi, Munemasa, Akihiro
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-1022
1573-7586
DOI10.1007/s10623-023-01327-0

Cover

More Information
Summary:In the present paper, we give harmonic weight enumerators and Jacobi polynomials for the first-order Reed–Muller codes and the extended Hamming codes. As a corollary, we show the nonexistence of combinatorial 4-designs in these codes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-023-01327-0