Splicing sites prediction of human genome using machine learning techniques

The accurate splice site prediction has several applications in the field of medical sciences and biochemistry. For instance, any mutation affecting the splice site will lead to genetic diseases and cancer such as Lynch syndrome and breast cancer. For this purpose, collecting the Ribonucleic Acid (R...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 20; pp. 30439 - 30460
Main Authors Ullah, Waseem, Muhammad, Khan, Ul Haq, Ijaz, Ullah, Amin, Ullah Khattak, Saeed, Sajjad, Muhammad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The accurate splice site prediction has several applications in the field of medical sciences and biochemistry. For instance, any mutation affecting the splice site will lead to genetic diseases and cancer such as Lynch syndrome and breast cancer. For this purpose, collecting the Ribonucleic Acid (RNA) samples is an efficient and convenient method to detect the involvement of splicing defects in disease formation. Therefore, the present study aims to develop an accurate and robust Computer-Aided Diagnosis (CAD) method for swift and precise targeting of splice site sequences. A composite features-based model is proposed by integrating three different sample representation methods i.e., Dinucleotide Composition (DNC), Trinucleotide Composition (TNC) and Tetranucleotide Composition (TetraNC) for precise splice site prediction after converting the DNA sequences into numerical descriptors. The precision and accuracy of these features are analyzed by applying different machine learning algorithms such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Naïve Bayes (NB). Results show that the proposed model of composite features vector with SVM classifier achieved an accuracy of 95.20% and 97.50% for donor and acceptor sites datasets, respectively.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-021-10619-3