Ab-initio study of the structural, optoelectronic, magnetic, hydrogen storage properties and mechanical behavior of novel combinations of hydride perovskites LiXH3 (X = Cr, Fe, Co, & Zn) for hydrogen storage applications

LiXH 3 (X = Cr, Fe, Co, & Zn) hydride type perovskites have been studied by applying density functional theory (DFT), and their structural, optoelectronic, magnetic, hydrogen storage, and mechanical properties have been calculated. The results show that these materials are synthesizable for hydr...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational electronics Vol. 20; no. 6; pp. 2284 - 2299
Main Authors Hayat, Shafqat, Arif Khalil, R. M., Hussain, Muhammad Iqbal, Rana, A. M., Hussain, Fayyaz
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:LiXH 3 (X = Cr, Fe, Co, & Zn) hydride type perovskites have been studied by applying density functional theory (DFT), and their structural, optoelectronic, magnetic, hydrogen storage, and mechanical properties have been calculated. The results show that these materials are synthesizable for hydrogen storage applications. The energy band structures as well as total density of states (TDOS) and partial density of states (PDOS) unveil that LiCrH 3 , LiCoH 3 , and LiZnH 3 possess metallic character, while LiFeH 3 exhibits semiconducting behavior. The lattice constants are calculated by applying PBE + GGA functional which are listed as 3.4940, 3.1791, 3.6343, and 3.7132 Å for LiXH 3 (X = Cr, Fe, Co, & Zn), respectively. In order to manage the restriction of PBE + GGA functional, the lattice constants are also calculated by applying hybrid HSE06 functional which are found to be 3.3126, 2.9675, 3.1531, and 3.4018 Å for LiCrH 3 , LiFeH 3 , LiCoH 3, and LiZnH 3 , respectively. The elastic stiffness constants show that these materials are mechanically and elastically stable and are deemed suitable as transportation materials in hydrogen storage devices. Moreover, mechanical parameters such as Poisson coefficient, Cauchy pressure, melting temperature, Young, Bulk, and Shear moduli have been calculated. Dielectric constants, refractive index, optical conductivity, absorptivity, and energy loss function have been determined to seek an optical behavior of the considered perovskites for hydrogen storage applications. The present study is the first theoretical approach to the contribution for future exploration of these materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1569-8025
1572-8137
DOI:10.1007/s10825-021-01807-3