Continuous-Variable Quantum Computing and its Applications to Cryptography

We propose a quantum cryptography based on an algorithm for determining a function using continuous-variable entangled states. The security of our cryptography is based on the Ekert 1991 protocol, which uses an entangled state. Eavesdropping destroys the entangled state. Alice selects a secret funct...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of theoretical physics Vol. 59; no. 10; pp. 3184 - 3188
Main Authors Diep, Do Ngoc, Nagata, Koji, Wong, Renata
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a quantum cryptography based on an algorithm for determining a function using continuous-variable entangled states. The security of our cryptography is based on the Ekert 1991 protocol, which uses an entangled state. Eavesdropping destroys the entangled state. Alice selects a secret function from the very large number of possible function types. Bob’s aim is to determine the selected function (a key) without an eavesdropper learning it. In order for both Alice and Bob to be able to select the same function classically, in the worst case Bob requires a very large number of queries to Alice. In the quantum case however, Bob requires just a single query. By measuring the single entangled state, which is sent to him by Alice, Bob can obtain the function that Alice has selected. This quantum key distribution method is faster than the very large number of classical queries that would be required in the classical case.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-020-04571-5