Retrieval of colour and texture images using local directional peak valley binary pattern
Many content-based image retrieval (CBIR) methods are being developed to store more and more information about images in shorter feature vectors and to improve image retrieval rate. In the proposed method, two-step approach to CBIR has been developed. The first step generates an image mask from loca...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 23; no. 4; pp. 1569 - 1585 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Many content-based image retrieval (CBIR) methods are being developed to store more and more information about images in shorter feature vectors and to improve image retrieval rate. In the proposed method, two-step approach to CBIR has been developed. The first step generates an image mask from local binary pattern (LBP). This LBP mask is then utilized to draw comparison between the centre pixel and the eight surrounding pixels. The second step involves drawing the peak and valley patterns of local directional binary pattern for each image which is then combined with the colour histogram to retrieve similar images. Existing methods suffer from lower average image retrieval accuracy even with larger feature vectors. The proposed method overcomes such problems through shorter feature vectors that can store more information about the image. As illustrated through experimental results, the proposed method produces promising results with shorter feature vector of length 56 and improved image retrieval rate of about 5–10%. Our method outperforms similar techniques when tested with public data sets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1433-7541 1433-755X |
DOI: | 10.1007/s10044-020-00879-4 |