Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction
Due to the sluggish nature of the oxygen reduction reaction (ORR), it requires electro-catalysts to speed up the kinetics of ORR at a practical level. Covalent organic frameworks (COFs)-based materials were reported to be one of the most promising electrocatalysts for ORR among the different low-cos...
Saved in:
Published in | Journal of inclusion phenomena and macrocyclic chemistry Vol. 102; no. 5-6; pp. 477 - 485 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to the sluggish nature of the oxygen reduction reaction (ORR), it requires electro-catalysts to speed up the kinetics of ORR at a practical level. Covalent organic frameworks (COFs)-based materials were reported to be one of the most promising electrocatalysts for ORR among the different low-cost ORR electrocatalysts. These molecular COFs-materials offer the following benefits: (i) precise control of active sites, (ii) simple understanding of structure-activity relationships, (iii) chemically adjustable and well-defined pore size architecture, and (iv) adheres to well-defined reaction pathways. Surprisingly, the importance of structure-activity correlations is well understood, and a number of strategies for improving the activity of such catalysts have been documented. The goal of this study is to simplify COFs chemistry, highlight recent comprehensive designs for ORR, and highlight some future features of COFs engineering for ORR electrocatalysis. |
---|---|
ISSN: | 1388-3127 1573-1111 |
DOI: | 10.1007/s10847-022-01140-7 |