Sensitivity analysis of coupled acoustic-structural systems under non-stationary random excitations based on adjoint variable method

Sensitivity analysis of coupled acoustic-structural systems under non-stationary random excitations is investigated in this paper. The combined method of direct differentiation method (DDM) and pseudo excitation method (PEM) in previous work is computationally expensive for problems with large-scale...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 64; no. 6; pp. 3331 - 3343
Main Authors Shang, Linyuan, Zhai, Jingjuan, Zhao, Guozhong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sensitivity analysis of coupled acoustic-structural systems under non-stationary random excitations is investigated in this paper. The combined method of direct differentiation method (DDM) and pseudo excitation method (PEM) in previous work is computationally expensive for problems with large-scale design variables. To circumvent this difficulty, a fast sensitivity analysis method integrating the adjoint variable method (AVM) and PEM for coupled acoustic-structural systems under non-stationary random excitations is proposed. In this framework, the sensitivity analysis of coupled systems subject to non-stationary random excitations is transformed into a sensitivity analysis under pseudo-transient excitations with the help of PEM. On this basis, the computing efficiency of random response sensitivity is improved directly by solving the adjoint equations involved in the AVM. Numerical examples fully demonstrate the accuracy and efficiency of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-021-02978-0