Anisotropic Micropolar Fluids Subject to a Uniform Microtorque: The Unstable Case

We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic microstructure on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial equilibrium. We prove that this equilibrium is nonlinearly unstable. Our proof relies on a nonlinear...

Full description

Saved in:
Bibliographic Details
Published inCommunications in mathematical physics Vol. 381; no. 3; pp. 947 - 999
Main Authors Remond-Tiedrez, Antoine, Tice, Ian
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic microstructure on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial equilibrium. We prove that this equilibrium is nonlinearly unstable. Our proof relies on a nonlinear bootstrap instability argument which uses control of higher-order norms to identify the instability at the L 2 level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-020-03928-5