Wind-resistant structural optimization of a supertall building with complex structural system

Wind load is the most critical kind of loads in the structural design of supertall buildings. Performance-based wind-resistant structural optimization can effectively reduce the material cost of supertall buildings in the premise of ensuring their structural safety and serviceability. For modern sup...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 62; no. 6; pp. 3493 - 3506
Main Authors Xu, A., Zhao, R. H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wind load is the most critical kind of loads in the structural design of supertall buildings. Performance-based wind-resistant structural optimization can effectively reduce the material cost of supertall buildings in the premise of ensuring their structural safety and serviceability. For modern supertall buildings with complex structural systems, the formulation of its structural optimization problem is highly complicated. Moreover, the optimization problem itself is also nonlinear and extensive in scale. This study first addresses the optimization formulation of complex structure system which includes concrete-filled steel tube (CFST) frame members and shear wall members. These structural members are often used in supertall buildings but are seldom discussed in existing literature of structural optimization. Then, the interior point algorithm, which is propitious for large-scale nonlinear optimization, is used to seek the optimal design solution. A real-life supertall building, the 432 m Guangzhou West Tower, is used as an example to examine the effectiveness of the proposed computer-based optimization method. The proposed method is shown to work effectively in the optimal wind-resistant design of supertall buildings with complex structural systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-020-02652-x