Maximizing user type diversity for task assignment in crowdsourcing
Crowdsourcing employs numerous users to perform certain tasks, in which task assignment is a challenging issue. Existing researches on task assignment mainly consider spatial–temporal diversity and capacity diversity, but not focus on the type diversity of users, which may lead to low quality of tas...
Saved in:
Published in | Journal of combinatorial optimization Vol. 40; no. 4; pp. 1092 - 1120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Crowdsourcing employs numerous users to perform certain tasks, in which task assignment is a challenging issue. Existing researches on task assignment mainly consider spatial–temporal diversity and capacity diversity, but not focus on the type diversity of users, which may lead to low quality of tasks. This paper formalizes a novel task assignment problem in crowdsourcing, where a task needs the cooperation of various types of users, and the quality of a task is highly related to the various types of the recruited users. Therefore, the goal of the problem is to maximize the user type diversity subject to limited task budget. This paper uses three heuristic algorithms to try to resolve this problem, so as to maximize user type diversity. Through extensive evaluation, the proposed algorithm Unit Reward-based Greedy Algorithm by Type obviously improves the user type diversity under different user type distributions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-020-00645-6 |