Perylene-Diimide Molecules with Cyano Functionalization for Electron-Transporting Transistors
Core-cyanated perylene diimide (PDI_CY) derivatives are molecular compounds exhibiting an uncommon combination of appealing properties, including remarkable oxidative stability, high electron affinities, and excellent self-assembling properties. Such features made these compounds the subject of stud...
Saved in:
Published in | Electronics (Basel) Vol. 8; no. 2; p. 249 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Core-cyanated perylene diimide (PDI_CY) derivatives are molecular compounds exhibiting an uncommon combination of appealing properties, including remarkable oxidative stability, high electron affinities, and excellent self-assembling properties. Such features made these compounds the subject of study for several research groups aimed at developing electron-transporting (n-type) devices with superior charge transport performances. After about fifteen years since the first report, field-effect transistors based on PDI_CY thin films are still intensely investigated by the scientific community for the attainment of n-type devices that are able to balance the performances of the best p-type ones. In this review, we summarize the main results achieved by our group in the fabrication and characterization of transistors based on PDI8-CN2 and PDIF-CN2 molecules, undoubtedly the most renowned compounds of the PDI_CY family. Our attention was mainly focused on the electrical properties, both at the micro and nanoscale, of PDI8-CN2 and PDIF-CN2 films deposited using different evaporation techniques. Specific topics, such as the contact resistance phenomenon, the bias stress effect, and the operation in liquid environment, have been also analyzed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics8020249 |