Graphene-based hybrid plasmonic optical electro-absorption modulator on InP platform
This paper presents a novel design of an optical electro-absorption modulator based on a hybrid plasmonic structure with a graphene layer on the generic InP platform. Graphene-based optical modulators have the potential to revolutionize the field of optical communications. They enable high-speed dat...
Saved in:
Published in | Optical and quantum electronics Vol. 56; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a novel design of an optical electro-absorption modulator based on a hybrid plasmonic structure with a graphene layer on the generic InP platform. Graphene-based optical modulators have the potential to revolutionize the field of optical communications. They enable high-speed data transfer and facilitate advancements in quantum computing. Developing a highly compact modulator on the InP platform represents a significant objective for photonics researchers aiming to achieve large-scale photonic integration technology. In the proposed design, a metal layer on top of a ridge waveguide creates a hybrid plasmonic structure. At the same time, light modulation is accomplished by applying a bias voltage to the graphene layer. By manipulating the optical absorption properties through changes in the Fermi level of the graphene layer, calculations demonstrate a 3 dB bandwidth exceeding 70 GHz at λ = 1.55 μm for a 1 µm length. Furthermore, the impact of metal and SiO
2
dielectric layer thicknesses and chemical potential on the real part of the effective index, optical absorption, 3 dB bandwidth, extinction ratio, and insertion loss are quantitatively determined. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-023-06136-2 |