An Enhanced Fuzzy Control Strategy for Low-Level Thrusters in Marine Dynamic Positioning Systems Based on Chaotic Random Distribution Harmony Search

The required control force vector is distributed by the thrusters in marine dynamic positioning system (DPS) to obtain the desired thrust and angle of each thruster. The thrust of the thruster is mapped to the speed of the thruster, and the low-level thrust controller adjusts the speed of the thrust...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fuzzy systems Vol. 23; no. 6; pp. 1823 - 1839
Main Authors Wu, Defeng, Liao, Yuxiang, Hu, Chaodong, Yu, Shuanghe, Tian, Qingyuan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The required control force vector is distributed by the thrusters in marine dynamic positioning system (DPS) to obtain the desired thrust and angle of each thruster. The thrust of the thruster is mapped to the speed of the thruster, and the low-level thrust controller adjusts the speed of the thruster to achieve the vessel’s dynamic position. Based on the previous research, the permanent magnet synchronous motor (PMSM) is selected as the low-level driving motor, and it is combined with the propeller to form the low-level thrusters for the DPS. The fuzzy control strategy is selected for the PMSM controller design, and the proposed chaotic random distribution harmony search (CRDHS) algorithm is used to optimize the fuzzy controller rules’ weights. The proposed CRDHS employs a chaotic map for rule weight adaptation in order to prevent the conventional harmony search to get stuck on local solutions. By adjusting the weights of each fuzzy rule via CRDHS, more consistent control performance is achieved. The required fuzzy output and the fuzzy controller are used for control of the PMSM. Simulation results show that under load disturbance, the fuzzy controller based on CRDHS has better control performance.
ISSN:1562-2479
2199-3211
DOI:10.1007/s40815-020-00989-5