A height-resolving tropical cyclone boundary layer model with vertical advection process

The height-resolving model is thought to be an optimal scheme for modeling the tropical cyclone (TC) wind fields in the boundary layer because it explicitly depicts the wind structures in that layer as TC evolves over time. However, the vertical advection process which exists in TCs has not been wel...

Full description

Saved in:
Bibliographic Details
Published inNatural hazards (Dordrecht) Vol. 107; no. 1; pp. 723 - 749
Main Authors Yang, Jian, Chen, Yu, Zhou, Hua, Duan, Zhongdong
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The height-resolving model is thought to be an optimal scheme for modeling the tropical cyclone (TC) wind fields in the boundary layer because it explicitly depicts the wind structures in that layer as TC evolves over time. However, the vertical advection process which exists in TCs has not been well considered in previously proposed parametric TC models. Neglecting this process may cause deviations of the simulated wind field structure in the boundary layer. Herein, a height-resolving boundary layer wind field model incorporating both the vertical advection and vertical diffusion processes is proposed and a semi-analytical solution to the governing equations is developed. The adequacy of this model is evaluated by comparing with the Weather Research and Forecasting model simulations, the Hurricane Research Division’s H*Wind snapshots, GPS dropsonde datasets and ground measurements of several TC events. Results show that the proposed model with vertical advection can reasonably produce the wind fields of TCs, and its advantage lies in the production of a more realistic three-dimensional wind structure in the boundary layer.
ISSN:0921-030X
1573-0840
DOI:10.1007/s11069-021-04603-1