LiteMSNet: a lightweight semantic segmentation network with multi-scale feature extraction for urban streetscape scenes
Semantic segmentation plays a pivotal role in computer scene understanding, but it typically requires a large amount of computing to achieve high performance. To achieve a balance between accuracy and complexity, we propose a lightweight semantic segmentation model, termed LiteMSNet (a Lightweight S...
Saved in:
Published in | The Visual computer Vol. 41; no. 4; pp. 2801 - 2815 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Semantic segmentation plays a pivotal role in computer scene understanding, but it typically requires a large amount of computing to achieve high performance. To achieve a balance between accuracy and complexity, we propose a lightweight semantic segmentation model, termed LiteMSNet (a Lightweight Semantic Segmentation Network with Multi-Scale Feature Extraction for urban streetscape scenes). In this model, we propose a novel Improved Feature Pyramid Network, which embeds a shuffle attention mechanism followed by a stacked Depth-wise Asymmetric Gating Module. Furthermore, a Multi-scale Dilation Pyramid Module is developed to expand the receptive field and capture multi-scale feature information. Finally, the proposed lightweight model integrates two loss mechanisms, the Cross-Entropy and the Dice Loss functions, which effectively mitigate the issue of data imbalance and gradient saturation. Numerical experimental results on the CamVid dataset demonstrate a remarkable mIoU measurement of 70.85% with less than 5M parameters, accompanied by a real-time inference speed of 66.1 FPS, surpassing the existing methods documented in the literature. The code for this work will be made available at
https://github.com/River-ding/LiteMSNet
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0178-2789 1432-2315 |
DOI: | 10.1007/s00371-024-03569-y |