Real and fake emotion detection using enhanced boosted support vector machine algorithm
Differentiating real and fake emotions becomes a new challenge in facial expression recognition and emotion detection. Real and fake emotions should be taken into account when developing an application. Otherwise, a fake emotion can be categorized as real emotion thereby rendering the model as futil...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 1; pp. 1333 - 1353 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-022-13210-6 |
Cover
Loading…
Summary: | Differentiating real and fake emotions becomes a new challenge in facial expression recognition and emotion detection. Real and fake emotions should be taken into account when developing an application. Otherwise, a fake emotion can be categorized as real emotion thereby rendering the model as futile. Very limited research has dealt with identifying fake emotions with accuracy as results are in a range of 51–76%. Performance of the available methods in detecting fake emotions is not encouraging. Thus, in this paper, we have proposed Enhanced Boosted Support Vector Machine (EBSVM) algorithm. EBSVM is a novel technique to determine important thresholds required to understand fake emotions. We have created a new dataset named FED comprising both real and fake emotion images of 50 subjects and used them with experiments along with SASE-FE. EBSVM considers the entire data for classification at each iteration using the ensemble classifier. The EBSVM algorithm achieved 98.08% as classification accuracy for different K-fold validations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-022-13210-6 |