Max filtering with reflection groups

Given a finite-dimensional real inner product space V and a finite subgroup G of linear isometries, max filtering affords a bilipschitz Euclidean embedding of the orbit space V / G . We identify the max filtering maps of minimum distortion in the setting where G is a reflection group. Our analysis i...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 49; no. 6
Main Authors Mixon, Dustin G., Packer, Daniel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Given a finite-dimensional real inner product space V and a finite subgroup G of linear isometries, max filtering affords a bilipschitz Euclidean embedding of the orbit space V / G . We identify the max filtering maps of minimum distortion in the setting where G is a reflection group. Our analysis involves an interplay between Coxeter’s classification and semidefinite programming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-023-10084-6