A new method toward the Landau–Ginzburg/Calabi–Yau correspondence via quasi-maps

The Landau–Ginzburg/Calabi–Yau correspondence claims that the Gromov–Witten invariant of the quintic Calabi–Yau 3-fold should be related to the Fan–Jarvis–Ruan–Witten invariant of the associated Landau–Ginzburg model via wall crossings. In this paper, we consider the stack of quasi-maps with a cosec...

Full description

Saved in:
Bibliographic Details
Published inMathematische Zeitschrift Vol. 294; no. 1-2; pp. 161 - 199
Main Authors Choi, Jinwon, Kiem, Young-Hoon
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Landau–Ginzburg/Calabi–Yau correspondence claims that the Gromov–Witten invariant of the quintic Calabi–Yau 3-fold should be related to the Fan–Jarvis–Ruan–Witten invariant of the associated Landau–Ginzburg model via wall crossings. In this paper, we consider the stack of quasi-maps with a cosection and introduce sequences of stability conditions which enable us to interpolate between the moduli stack for Gromov–Witten invariants and the moduli stack for Fan–Jarvis–Ruan–Witten invariants.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-019-02249-1