Design of a novel detector based on photonic crystal nanostructure for ultra-high performance detection of cells with diabetes
Diabetes is becoming a global problem since it is the leading cause of mortality for many people all over the world. As a result, a diabetes sensor that is accurate, quick, and sensitive is required. On the basis of a binary photonic crystal, a new bio-photonic detector has been built for sensing di...
Saved in:
Published in | Optical and quantum electronics Vol. 54; no. 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Diabetes is becoming a global problem since it is the leading cause of mortality for many people all over the world. As a result, a diabetes sensor that is accurate, quick, and sensitive is required. On the basis of a binary photonic crystal, a new bio-photonic detector has been built for sensing diabetes-affected cells. It has two layers of Ge and TiN, with a defect cavity chosen as a sample and placed in the middle. The suggested biosensor's detecting mechanism is based on altering the refractive index of the sensing sample, which causes a shift in the location of the resonant peak inside the photonic band gap of transmittance spectra. The suggested structure's transmittance qualities are examined using the transfer matrix approach. The impact of incidence angle (TE and TM polarization) and defect cavity thickness on the performance of our proposed biosensor has been investigated. The suggested biosensor has a sensitivity of 2676.66 nm/RIU at optimal conditions, which is exceptionally high when compared to several previous studies. In addition, the suggested biosensor with a very low detection limit has an ultra-high-quality factor and figure of merit. Furthermore, the suggested detector is simple to fabricate and has a low-cost structure, making it appealing for use in a variety of bio-sensing applications. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-022-04093-w |