Gridless super-resolution sparse recovery for non-sidelooking STAP using reweighted atomic norm minimization
The sparse recovery space–time adaptive processing (SR-STAP) can reduce the requirements of clutter samples and suppress clutter effectively using limited training samples for airborne radar. Commonly, the whole angle-Doppler plane is uniformly discretized into small grid points in SR-STAP methods....
Saved in:
Published in | Multidimensional systems and signal processing Vol. 32; no. 4; pp. 1259 - 1276 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The sparse recovery space–time adaptive processing (SR-STAP) can reduce the requirements of clutter samples and suppress clutter effectively using limited training samples for airborne radar. Commonly, the whole angle-Doppler plane is uniformly discretized into small grid points in SR-STAP methods. However, the clutter patches deviate from the pre-discretized grid points in a non-sidelooking SR-STAP radar. The off-grid effect degrades the SR-STAP performance significantly. In this paper, a gridless SR-STAP method based on reweighted atomic norm minimization is proposed, in which the clutter spectrum is precisely estimated in the continuous angle-Doppler domain without resolution limit. Numerical simulations are conducted and the results show that the proposed method can achieve better performance than the SR-STAP methods with discretized dictionaries and the SR-STAP methods utilizing atomic norm minimization. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0923-6082 1573-0824 |
DOI: | 10.1007/s11045-021-00784-x |