Uniform Rectifiability and Elliptic Operators Satisfying a Carleson Measure Condition
The present paper establishes the correspondence between the properties of the solutions of a class of PDEs and the geometry of sets in Euclidean space. We settle the question of whether (quantitative) absolute continuity of the elliptic measure with respect to the surface measure and uniform rectif...
Saved in:
Published in | Geometric and functional analysis Vol. 31; no. 2; pp. 325 - 401 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The present paper establishes the correspondence between the properties of the solutions of a class of PDEs and the geometry of sets in Euclidean space. We settle the question of whether (quantitative) absolute continuity of the elliptic measure with respect to the surface measure and uniform rectifiability of the boundary are equivalent, in an optimal class of divergence form elliptic operators satisfying a suitable Carleson measure condition in uniform domains with Ahlfors regular boundaries. The result can be viewed as a quantitative analogue of the Wiener criterion adapted to the singular
L
p
data case. The first step is taken in Part I, where we considered the case in which the desired Carleson measure condition on the coefficients holds with
sufficiently small constant
, using a novel application of techniques developed in geometric measure theory. In Part II we establish the final result, that is, the “large constant case”. The key elements are a powerful extrapolation argument, which provides a general pathway to self-improve scale-invariant small constant estimates, and a new mechanism to transfer quantitative absolute continuity of elliptic measure between a domain and its subdomains. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-021-00566-4 |