Human activity recognition based on smartphone using fast feature dimensionality reduction technique
Human activity recognition aims to identify the activities carried out by a person. Recognition is possible by using information that is retrieved from numerous physiological signals by attaching sensors to the subject’s body. Lately, sensors like accelerometer and gyroscope are built-in inside the...
Saved in:
Published in | Journal of ambient intelligence and humanized computing Vol. 12; no. 2; pp. 2365 - 2374 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human activity recognition aims to identify the activities carried out by a person. Recognition is possible by using information that is retrieved from numerous physiological signals by attaching sensors to the subject’s body. Lately, sensors like accelerometer and gyroscope are built-in inside the Smartphone itself, which makes activity recognition very simple. To make the activity recognition system work properly in smartphone which has power constraint, it is very essential to use an optimization technique which can reduce the number of features used in the dataset with less time consumption. In this paper, we have proposed a dimensionality reduction technique called fast feature dimensionality reduction technique (FFDRT). A dataset (UCI HAR repository) available in the public domain is used in this work. Results from this study shows that the fast feature dimensionality reduction technique applied for the dataset has reduced the number of features from 561 to 66, while maintaining the activity recognition accuracy at 98.72% using random forest classifier and time consumption in dimensionality reduction stage using FFDRT is much below the state of the art techniques. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1868-5137 1868-5145 |
DOI: | 10.1007/s12652-020-02351-x |