A comparison of vertical accuracy of global DEMs and DEMs produced by GEDI, ICESat-2

Digital elevation models (DEM) are an essential data source in many professional disciplines, with the help of gridded height information and values such as slope and aspect produced from that information. In this study, Ice, Cloud and land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynam...

Full description

Saved in:
Bibliographic Details
Published inEarth science informatics Vol. 16; no. 3; pp. 2693 - 2707
Main Authors Narin, Omer Gokberk, Gullu, Mevlut
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Digital elevation models (DEM) are an essential data source in many professional disciplines, with the help of gridded height information and values such as slope and aspect produced from that information. In this study, Ice, Cloud and land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI) satellite-altimetry data, and SRTM, ASTER-GDEM, and ALOS World3D data were used as Global DEMs (GDEMs) data in three different areas (U.S.A., New Zealand and Puerto Rico). We used kriging methods for interpolation to create the new rasters. Point-based accuracies were compared with the GDEMs from satellite-altimetry systems and raster-based comparisons were made by deriving DEMs with satellite-altimetry data in three different areas. It was seen that the ICESat-2 data in point-based results had similar accuracy with other GDEMs. DEMs produced by using ICESat-2 and GEDI data together gave relatively better results than using alone. In particular, the correlation was found to be highly correlated with 99%.
ISSN:1865-0473
1865-0481
DOI:10.1007/s12145-023-01060-1