Fuzzy time-series prediction model based on text features and network features

The prediction of time-series data is a challenging and complex issue. For many practical applications, network topology information and text information can play a perfect role in time-series prediction. This article takes stock data as an example by constructing a graph, connecting each stock’s up...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 5; pp. 3639 - 3649
Main Authors Liu, Zeguang, Li, Yao, Liu, Huilin
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The prediction of time-series data is a challenging and complex issue. For many practical applications, network topology information and text information can play a perfect role in time-series prediction. This article takes stock data as an example by constructing a graph, connecting each stock’s upstream and downstream industries, and obtaining useful text features and topological features to predict the stock time-series. Based on the time-series data features, text features, and the topological features of the stock industry chain of machine learning, we compared our prediction model with other fuzzy time-series prediction methods, which are only based on historical features. The experiment shows that our method is better than the other methods in terms of the performance of multiple stocks in each stock’s time-series prediction. The experimental results show that the stock topology based on the industrial chain effectively improved time-series forecasting accuracy.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-021-05834-w