A positive answer to Bhatia—Li conjecture on the monotonicity for a new mean in its parameter

The Bhatia—Li mean B p x , y of positive numbers x and y is defined as 1 B p x , y = p B 1 / p , 1 / p ∫ 0 ∞ dt t p + x p 1 / p t p + y p 1 / p , p ∈ 0 , ∞ , where B · , · is the Beta function. This new family of means includes the famous logarithmic mean, the Gaussian arithmetic-geometric mean etc....

Full description

Saved in:
Bibliographic Details
Published inRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Vol. 114; no. 3
Main Authors Yang, Zhen-Hang, Tian, Jing-Feng, Wang, Miao-Kun
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Bhatia—Li mean B p x , y of positive numbers x and y is defined as 1 B p x , y = p B 1 / p , 1 / p ∫ 0 ∞ dt t p + x p 1 / p t p + y p 1 / p , p ∈ 0 , ∞ , where B · , · is the Beta function. This new family of means includes the famous logarithmic mean, the Gaussian arithmetic-geometric mean etc. In 2012, Bhatia and Li conjectured that B p x , y is an increasing function of the parameter p on 0 , ∞ . In this paper, we give a positive answer to this conjecture. Moreover, the mean B p x , y is generalized to an multivariate mean and its elementary properties are investigated.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-020-00856-w