Strain-induced enhancement of carrier mobility and optoelectronic properties in antimonene/germanane vdW heterostructure

By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germana...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 128; no. 11
Main Authors Yan, Jie, Cao, Dan, Yang, Xue, Wang, Jianfeng, Jiang, Zhouting, Jiao, Zhiwei, Shu, Haibo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germanane heterostructure with type-II band alignment has an indirect band gap of 1.38 eV. The band gap, band alignment, carrier mobility, and optical absorption coefficient of the heterostructure can be tuned by loading in-plane strain. In particular, the in-plane strain can drive multiple indirect–direct–indirect band gap transitions and the band-edge alignment from type-I to type-II. Moreover, the heterostructure exhibits increased hole mobility and ultra-high electron mobility up to 3 × 10 4  cm 2  V −1  s −1 under the tensile strain of 4%. These findings suggest large potential of antimonene/germanane heterostructure for electronic and optoelectronic applications.
AbstractList By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germanane heterostructure with type-II band alignment has an indirect band gap of 1.38 eV. The band gap, band alignment, carrier mobility, and optical absorption coefficient of the heterostructure can be tuned by loading in-plane strain. In particular, the in-plane strain can drive multiple indirect–direct–indirect band gap transitions and the band-edge alignment from type-I to type-II. Moreover, the heterostructure exhibits increased hole mobility and ultra-high electron mobility up to 3 × 104 cm2 V−1 s−1 under the tensile strain of 4%. These findings suggest large potential of antimonene/germanane heterostructure for electronic and optoelectronic applications.
By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germanane heterostructure with type-II band alignment has an indirect band gap of 1.38 eV. The band gap, band alignment, carrier mobility, and optical absorption coefficient of the heterostructure can be tuned by loading in-plane strain. In particular, the in-plane strain can drive multiple indirect–direct–indirect band gap transitions and the band-edge alignment from type-I to type-II. Moreover, the heterostructure exhibits increased hole mobility and ultra-high electron mobility up to 3 × 10 4  cm 2  V −1  s −1 under the tensile strain of 4%. These findings suggest large potential of antimonene/germanane heterostructure for electronic and optoelectronic applications.
ArticleNumber 958
Author Jiao, Zhiwei
Jiang, Zhouting
Yan, Jie
Yang, Xue
Cao, Dan
Shu, Haibo
Wang, Jianfeng
Author_xml – sequence: 1
  givenname: Jie
  surname: Yan
  fullname: Yan, Jie
  organization: College of Science, China Jiliang University
– sequence: 2
  givenname: Dan
  surname: Cao
  fullname: Cao, Dan
  email: caodan@cjlu.edu.cn
  organization: College of Science, China Jiliang University
– sequence: 3
  givenname: Xue
  surname: Yang
  fullname: Yang, Xue
  organization: College of Science, China Jiliang University
– sequence: 4
  givenname: Jianfeng
  surname: Wang
  fullname: Wang, Jianfeng
  organization: College of Science, China Jiliang University
– sequence: 5
  givenname: Zhouting
  surname: Jiang
  fullname: Jiang, Zhouting
  organization: College of Science, China Jiliang University
– sequence: 6
  givenname: Zhiwei
  surname: Jiao
  fullname: Jiao, Zhiwei
  organization: College of Science, China Jiliang University
– sequence: 7
  givenname: Haibo
  surname: Shu
  fullname: Shu, Haibo
  organization: College of Optical and Electronic Technology, China Jiliang University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZNvdHEX8AsGDiseQTWY10k1qkhX7702tIHgwlyHwPjMvz4xMfPBIyDGDUwbQnCUAIWQFnFewBCkquUemrBbbr4AJmYKsm6oVcnlAZim9QXk151Py-ZCjdr5y3o4GLUX_qr3BAX2moadGx-gw0iF0buXyhmpvaVjngCs0OQbvDF3HsMaYHSbqfAlkN5RyHs9eMA7aa4_0wz7TV8wYQ8pxNHmMeEj2e71KePQz5-Tp6vLx4qa6u7--vTi_q4xgMletXaCsJVi7MAhtt-SdbXBZI9ONbTXrWugsx97yTqDV_QIX0HAA2faN6Fkn5uRkt7fUfB8xZfUWxujLScUbziUAa6Gk2l3KlIopYq-Myzq74Ld6VoqB2npWO8-qeFbfnpUsKP-DrqMbdNz8D4kdlErYF1G_rf6hvgDtr5Yd
CitedBy_id crossref_primary_10_1039_D4RA01029A
crossref_primary_10_1088_1361_6463_ad15bd
Cites_doi 10.1039/C5CP00875A
10.1021/acsnano.1c02327
10.1039/D1NJ00344E
10.1016/0927-0256(96)00008-0
10.1063/1.1760074
10.1002/smll.201402041
10.1103/PhysRevB.54.11169
10.1016/j.jssc.2018.10.031
10.1039/C7RA08029H
10.1103/PhysRevB.80.155453
10.1039/D1NR07150E
10.1038/nphys2954
10.1039/D0CP06213H
10.1038/srep22440
10.1021/nn4009406
10.1039/C7TC02830J
10.1038/s41467-020-16817-1
10.1021/acsaem.1c03796
10.1039/D1TC05533J
10.1038/s42254-018-0016-0
10.1103/PhysRevLett.77.3865
10.1109/TED.2022.3140363
10.1039/D0TA02847A
10.1103/PhysRevLett.113.135504
10.1039/C6TC01141A
10.1103/RevModPhys.73.515
10.1002/adfm.202007038
10.1039/D1CP03632G
10.1038/nature04233
10.1103/PhysRevE.59.1785
10.1002/anie.200906780
10.1103/PhysRevLett.102.236804
10.1016/j.jssc.2018.05.021
10.1063/1.1564060
10.1103/PhysRevB.13.5188
10.1021/acsami.1c23988
10.1002/anie.201411246
10.1002/adma.201900569
10.1016/j.trac.2018.05.008
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00339-022-06093-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
ExternalDocumentID 10_1007_s00339_022_06093_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61775201; 62174151; 21873087
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY22A040002; LZ22F040003; LY19A040006
  funderid: http://dx.doi.org/10.13039/501100004731
GroupedDBID -54
-5F
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-8d5e9490dd5ce08b62bd7e64e1a7d8a1b80bd2efd2b3edaf5e50720098f73f1b3
IEDL.DBID U2A
ISSN 0947-8396
IngestDate Fri Jul 25 11:15:26 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 00:39:36 EDT 2025
Fri Feb 21 02:44:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Strain effect
First principle calculation
Optoelectronic properties
Carrier mobility
vdW Heterostructure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8d5e9490dd5ce08b62bd7e64e1a7d8a1b80bd2efd2b3edaf5e50720098f73f1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2722900180
PQPubID 2043608
ParticipantIDs proquest_journals_2722900180
crossref_citationtrail_10_1007_s00339_022_06093_9
crossref_primary_10_1007_s00339_022_06093_9
springer_journals_10_1007_s00339_022_06093_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Materials Science & Processing
PublicationTitle Applied physics. A, Materials science & processing
PublicationTitleAbbrev Appl. Phys. A
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Suzuki, Iwasaki, Silva, Suehara, Watanabe, Taniguchi, Moriyama, Yoshimura, Aizawa, Nakayama (CR21) 2020; 31
Baroni, De Gironcoli, Dal Corso, Giannozzi (CR42) 2001; 73
Bianco, Butler, Jiang, Restrepo, Windl, Goldberger (CR10) 2013; 7
Bafekry, Fadlallah, Faraji, Hieu, Jappor, Stampfl, Ang, Ghergherehchi (CR6) 2022; 14
Zhang, He, Zhao, He (CR32) 2018; 265
Liao, Wu, Kovalska, Oliveira, Azadmanjiri, Mazanek, Spejchalova, Xu, Levinsky (CR12) 2022; 14
Kress, Furthmüller (CR37) 1996; 6
Bafekry, Faraji, Abdollahzadeh, Fadlallah, Chuong, Ghergherehchi, Feghhi (CR14) 2021; 45
Woods, Britnell, Eckmann, Ma, Lu, Guo, Lin, Yu, Cao, Gorbachev, Kretinin, Park, Ponomarenko, Katsnelson, Gornostyrev, Watanabe, Taniguchi, Casiraghi, Gao, Geim, Novoselov (CR27) 2014; 10
Monkhorst, Pack (CR39) 1976; 13
Hong, Ling, Wang, Zhang, Yang, Jia (CR23) 2019; 269
Balendhran, Walia, Nili, Sriram, Bhaskaran (CR5) 2015; 11
Lu, Gao, Hu, Shao (CR31) 2016; 6
Perdew, Burke, Ernzerhof (CR38) 1996; 77
Heyd, Scuseria, Ernzerhof (CR40) 2003; 118
Zhang, Zhang, Ji, Li, Ren, Li, Yuan, Wang (CR7) 2015; 17
Singh, Ahuja (CR11) 2022; 5
Huang, Alharbi, Mayer, Cuniberto, Taniguchi, Watanabe, Shabani, Shahrjerdi (CR19) 2020; 11
Jose, Rubio, Sturla, Guinea (CR28) 2014; 90
Chen, Yang, Meng, Jiang, Liang, Tan, Sun (CR22) 2015; 4
Bafekry, Obeid, Chuong, Ghergherehchi, Bagheri (CR13) 2020; 8
Tan, Liu, Ren (CR34) 2020; 29
Zheng, Cui, Yu, Chen (CR24) 2022; 69
Tong, Fang, Liu (CR26) 2019; 9
Yankowitz, Ma, Herrero, LeRoy (CR18) 2009; 1
Deschênes, Jacobberger, Deslauriers, Waller, Bouthillier, Arnold, Moutanabbi (CR20) 2019; 31
Bafekry, Gogova, Fadlallah, Chuong, Ghergherehchi, Faraji, Feghhia, Oskoeiang (CR15) 2021; 23
Heyd, Scuseria (CR41) 2004; 121
Cahangirov, Topsakal, Aktürk, Sahin, Ciraci (CR2) 2009; 102
Kress, Furthmüller (CR36) 1996; 54
Liu, Cao, Yao, Tang, Zhang, Chen, Shu (CR17) 2022; 10
Zhang, Zhang, Ji, Li, Ren, Li, Yuan, Wang (CR44) 2015; 17
Sahin, Cahangirov, Topsakal, Bekaroglu, Akturk, Senger, Ciraci (CR3) 2009; 80
Wang, Cao, Wang, Wang, Liang, Chen, Shu (CR25) 2017; 5
Bafekry, Karbasizadeh, Faraji, Bagheri, Abdolhosseini, Gogovae, Ghergherehchi (CR16) 2021; 23
Kress, Joubert (CR35) 1999; 59
Zhang, Yan, Li, Chen, Zeng (CR8) 2015; 54
Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Doubonos, Firsov (CR1) 2005; 438
Ng, Sturala, Vyskocil, Lazar, Martincova, Plutnar, Pumera (CR9) 2021; 15
Summerfield, Davies, Cheng, Korolkov, Cho, Mellor, Foxon, Khlobystov, Watanabe, Taniguchi, Eaves, Novikov, Beton (CR29) 2016; 6
van Wijk, Schuring, Katsnelson, Fasolino (CR30) 2014; 113
Li, Wang, Cai, Zhang, Wang, Ke (CR33) 2017; 7
Stoffel, Wessel, Lumey, Dronskowski (CR43) 2010; 49
Gablech, Pekárek, Klempa, Svatoš, Moghaddam, Neuzil, Pumera (CR4) 2018; 105
XY Tong (6093_CR26) 2019; 9
JP Perdew (6093_CR38) 1996; 77
A Bafekry (6093_CR14) 2021; 45
G Kress (6093_CR35) 1999; 59
S Zhang (6093_CR8) 2015; 54
H Lu (6093_CR31) 2016; 6
K Zheng (6093_CR24) 2022; 69
I Gablech (6093_CR4) 2018; 105
CR Woods (6093_CR27) 2014; 10
XY Tan (6093_CR34) 2020; 29
WX Zhang (6093_CR32) 2018; 265
A Bafekry (6093_CR6) 2022; 14
ZJ Huang (6093_CR19) 2020; 11
D Singh (6093_CR11) 2022; 5
XP Chen (6093_CR22) 2015; 4
G Kress (6093_CR36) 1996; 54
M Yankowitz (6093_CR18) 2009; 1
RW Zhang (6093_CR7) 2015; 17
S Ng (6093_CR9) 2021; 15
S Cahangirov (6093_CR2) 2009; 102
XH Li (6093_CR33) 2017; 7
G Kress (6093_CR37) 1996; 6
J Heyd (6093_CR40) 2003; 118
RW Zhang (6093_CR44) 2015; 17
H Sahin (6093_CR3) 2009; 80
PS Jose (6093_CR28) 2014; 90
S Suzuki (6093_CR21) 2020; 31
A Bafekry (6093_CR15) 2021; 23
A Summerfield (6093_CR29) 2016; 6
RP Stoffel (6093_CR43) 2010; 49
LP Liao (6093_CR12) 2022; 14
J Heyd (6093_CR41) 2004; 121
KS Novoselov (6093_CR1) 2005; 438
N Wang (6093_CR25) 2017; 5
NH Hong (6093_CR23) 2019; 269
S Baroni (6093_CR42) 2001; 73
MF Deschênes (6093_CR20) 2019; 31
HJ Monkhorst (6093_CR39) 1976; 13
MM van Wijk (6093_CR30) 2014; 113
XY Liu (6093_CR17) 2022; 10
A Bafekry (6093_CR13) 2020; 8
A Bafekry (6093_CR16) 2021; 23
E Bianco (6093_CR10) 2013; 7
S Balendhran (6093_CR5) 2015; 11
References_xml – volume: 113
  year: 2014
  ident: CR30
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 451
  year: 2014
  ident: CR27
  article-title: Commensurate–incommensurate transition in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
– volume: 7
  start-page: 44394
  year: 2017
  ident: CR33
  article-title: Arsenene/Ca(OH) Van Der Walls heterostructure: strain tunable electronic and photocatalytic properties
  publication-title: RSC Adv.
– volume: 5
  start-page: 2300
  year: 2022
  ident: CR11
  article-title: Two-dimensional perovskite/HfS van der Waals heterostructure as an absorber material for photovoltaic applications
  publication-title: ACS Appl. Energ. Mater.
– volume: 6
  start-page: 22440
  year: 2016
  ident: CR29
  article-title: Strain-engineered graphene grown on hexagonal boron nitride by molecular beam epitaxy
  publication-title: Sci. Rep.
– volume: 73
  start-page: 515
  year: 2001
  end-page: 562
  ident: CR42
  article-title: Phonons and related crystal properties from density-functional perturbation theory
  publication-title: Rev. Mod. Phys.
– volume: 17
  start-page: 12194
  year: 2015
  ident: CR7
  article-title: Tunable electronic properties in van der Waals heterostructure germanene/germanane
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 13248
  year: 2020
  ident: CR13
  article-title: Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt HgSe ): van der Waals heterostructures with novel optoelectronic and thermoelectric performances
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 4414
  year: 2013
  ident: CR10
  article-title: Stability and exfoliation of germanane: a germanium graphane analogue
  publication-title: ACS Nano
– volume: 14
  start-page: 5412
  year: 2022
  ident: CR12
  article-title: InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors
  publication-title: Nanoscale
– volume: 90
  year: 2014
  ident: CR28
  article-title: Spontaneous strains and gap in graphene on boron nitride
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 1984
  year: 2022
  end-page: 1990
  ident: CR17
  article-title: Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI /GaN heterojunction
  publication-title: J. Mater. Chem. C
– volume: 54
  start-page: 3112
  year: 2015
  ident: CR8
  article-title: Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 9687
  year: 2017
  ident: CR25
  article-title: Interface effect on electronic and optical properties of antimonene/GaAs van der Waals heterostructures
  publication-title: J. Mater. Chem. C
– volume: 102
  year: 2009
  ident: CR2
  article-title: Two- and one-dimensional honeycomb structures of silicon and germanium
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR38
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 640
  year: 2015
  end-page: 652
  ident: CR5
  article-title: Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene
  publication-title: Small
– volume: 11
  start-page: 3029
  year: 2020
  ident: CR19
  article-title: Versatile construction of van der Waals heterostructures using a dual-function polymeric film
  publication-title: Nat. Commu.
– volume: 59
  start-page: 1785
  year: 1999
  ident: CR35
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 5188
  year: 1976
  ident: CR39
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 21577
  year: 2022
  end-page: 215784
  ident: CR6
  article-title: Puckered penta-like PdPX (X = O, S, Te) semiconducting nanosheets: first-principles study of the mechanical, electro-optical, and photocatalytic properties
  publication-title: ACS Appl. Mater. Inter.
– volume: 269
  start-page: 513
  year: 2019
  ident: CR23
  article-title: Intriguing electronic properties of germanene/indium selenide and antimonene/indium selenide heterostructures
  publication-title: J. Solid State Chem.
– volume: 105
  start-page: 251
  year: 2018
  end-page: 262
  ident: CR4
  article-title: Monoelemental 2D materials-based field effect transistors for sensing and biosensing: phosphorene, antimonene, arsenene, silicene, and germanene go beyond grapheme
  publication-title: Trends Anal. Chem.
– volume: 4
  start-page: 5434
  year: 2015
  ident: CR22
  article-title: The electronic and optical properties of novel germanene and antimonene heterostructure
  publication-title: J. Mater. Chem. C
– volume: 49
  start-page: 5242
  year: 2010
  end-page: 5266
  ident: CR43
  article-title: Ab initio thermochemistry of solid-state materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 45
  start-page: 8291
  year: 2021
  ident: CR14
  article-title: A van der Waals heterostructure of MoS /MoSi N : a first-principles study
  publication-title: New J. Chem.
– volume: 6
  year: 2016
  ident: CR31
  article-title: Biaxial strain effect on electronic structure tuning in antimonene-based Van Der Walls heterostrutures
  publication-title: RSC Adv.
– volume: 1
  start-page: 112
  year: 2009
  ident: CR18
  article-title: van der Waals heterostructures combining graphene and hexagonal boron nitride
  publication-title: Nat. Rev. Phys.
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR1
  article-title: Two-dimensional gas of massless Dirac fermions in grapheme
  publication-title: Nature
– volume: 80
  year: 2009
  ident: CR3
  article-title: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations
  publication-title: Phys. Rev. B
– volume: 29
  year: 2020
  ident: CR34
  article-title: Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
  publication-title: Chin. Phys. B
– volume: 6
  start-page: 15
  year: 1996
  ident: CR37
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 31
  start-page: 2007038
  year: 2020
  ident: CR21
  article-title: Direct growth of germanene at interfaces between van der Waals materials and Ag(111)
  publication-title: Adv. Funct. Mater.
– volume: 121
  start-page: 1187
  year: 2004
  ident: CR41
  article-title: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 4865
  year: 2021
  ident: CR15
  article-title: Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 8207
  year: 2003
  ident: CR40
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 21196
  year: 2021
  ident: CR16
  article-title: van der Waals heterostructure of graphene and germanane: tuning the ohmic contact by electrostatic gating and mechanical strain
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  year: 2019
  ident: CR26
  article-title: Strain-induced electronic properties of van der Waals heterostructures based on tin dichalcogenides
  publication-title: AIP Adv.
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR36
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 1155
  year: 2022
  ident: CR24
  article-title: Indium selenide/antimonene heterostructure for multifunctional optoelectronics
  publication-title: IEEE T. Electron Dev.
– volume: 17
  start-page: 12194
  year: 2015
  end-page: 12198
  ident: CR44
  article-title: Tunable electronic properties in the van der Waals heterostructure of germanene/germanane
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 11681
  year: 2021
  ident: CR9
  article-title: Two-dimensional functionalized germananes as photoelectrocatalysts
  publication-title: ACS Nano
– volume: 31
  start-page: 1900569
  year: 2019
  ident: CR20
  article-title: Dynamics of antimonene-graphene van der Waals growth
  publication-title: Adv. Mater.
– volume: 265
  start-page: 257
  year: 2018
  ident: CR32
  article-title: Electronic properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures under in-plane biaxial strains
  publication-title: J. Solid State Chem.
– volume: 17
  start-page: 12194
  year: 2015
  ident: 6093_CR7
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00875A
– volume: 15
  start-page: 11681
  year: 2021
  ident: 6093_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02327
– volume: 45
  start-page: 8291
  year: 2021
  ident: 6093_CR14
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ00344E
– volume: 6
  start-page: 15
  year: 1996
  ident: 6093_CR37
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 121
  start-page: 1187
  year: 2004
  ident: 6093_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1760074
– volume: 11
  start-page: 640
  year: 2015
  ident: 6093_CR5
  publication-title: Small
  doi: 10.1002/smll.201402041
– volume: 17
  start-page: 12194
  year: 2015
  ident: 6093_CR44
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00875A
– volume: 54
  start-page: 11169
  year: 1996
  ident: 6093_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 90
  year: 2014
  ident: 6093_CR28
  publication-title: Phys. Rev. B
– volume: 269
  start-page: 513
  year: 2019
  ident: 6093_CR23
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.10.031
– volume: 7
  start-page: 44394
  year: 2017
  ident: 6093_CR33
  publication-title: RSC Adv.
  doi: 10.1039/C7RA08029H
– volume: 29
  year: 2020
  ident: 6093_CR34
  publication-title: Chin. Phys. B
– volume: 80
  year: 2009
  ident: 6093_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.155453
– volume: 14
  start-page: 5412
  year: 2022
  ident: 6093_CR12
  publication-title: Nanoscale
  doi: 10.1039/D1NR07150E
– volume: 10
  start-page: 451
  year: 2014
  ident: 6093_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2954
– volume: 23
  start-page: 4865
  year: 2021
  ident: 6093_CR15
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP06213H
– volume: 6
  start-page: 22440
  year: 2016
  ident: 6093_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/srep22440
– volume: 7
  start-page: 4414
  year: 2013
  ident: 6093_CR10
  publication-title: ACS Nano
  doi: 10.1021/nn4009406
– volume: 5
  start-page: 9687
  year: 2017
  ident: 6093_CR25
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02830J
– volume: 11
  start-page: 3029
  year: 2020
  ident: 6093_CR19
  publication-title: Nat. Commu.
  doi: 10.1038/s41467-020-16817-1
– volume: 5
  start-page: 2300
  year: 2022
  ident: 6093_CR11
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.1c03796
– volume: 10
  start-page: 1984
  year: 2022
  ident: 6093_CR17
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC05533J
– volume: 1
  start-page: 112
  year: 2009
  ident: 6093_CR18
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0016-0
– volume: 77
  start-page: 3865
  year: 1996
  ident: 6093_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 69
  start-page: 1155
  year: 2022
  ident: 6093_CR24
  publication-title: IEEE T. Electron Dev.
  doi: 10.1109/TED.2022.3140363
– volume: 8
  start-page: 13248
  year: 2020
  ident: 6093_CR13
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA02847A
– volume: 113
  year: 2014
  ident: 6093_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.135504
– volume: 4
  start-page: 5434
  year: 2015
  ident: 6093_CR22
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01141A
– volume: 73
  start-page: 515
  year: 2001
  ident: 6093_CR42
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.515
– volume: 31
  start-page: 2007038
  year: 2020
  ident: 6093_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007038
– volume: 23
  start-page: 21196
  year: 2021
  ident: 6093_CR16
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP03632G
– volume: 438
  start-page: 197
  year: 2005
  ident: 6093_CR1
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 59
  start-page: 1785
  year: 1999
  ident: 6093_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevE.59.1785
– volume: 49
  start-page: 5242
  year: 2010
  ident: 6093_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906780
– volume: 102
  year: 2009
  ident: 6093_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.236804
– volume: 265
  start-page: 257
  year: 2018
  ident: 6093_CR32
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.05.021
– volume: 118
  start-page: 8207
  year: 2003
  ident: 6093_CR40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 13
  start-page: 5188
  year: 1976
  ident: 6093_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 14
  start-page: 21577
  year: 2022
  ident: 6093_CR6
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.1c23988
– volume: 54
  start-page: 3112
  year: 2015
  ident: 6093_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411246
– volume: 31
  start-page: 1900569
  year: 2019
  ident: 6093_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900569
– volume: 6
  year: 2016
  ident: 6093_CR31
  publication-title: RSC Adv.
– volume: 105
  start-page: 251
  year: 2018
  ident: 6093_CR4
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.05.008
– volume: 9
  year: 2019
  ident: 6093_CR26
  publication-title: AIP Adv.
SSID ssj0000422
Score 2.4015207
Snippet By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorptivity
Alignment
Applied physics
Carrier mobility
Characterization and Evaluation of Materials
Condensed Matter Physics
Electron mobility
Energy gap
First principles
Heterostructures
Hole mobility
Machines
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Optical properties
Optoelectronics
Physics
Physics and Astronomy
Plane strain
Processes
Structural stability
Surfaces and Interfaces
Tensile strain
Thin Films
Two dimensional materials
Title Strain-induced enhancement of carrier mobility and optoelectronic properties in antimonene/germanane vdW heterostructure
URI https://link.springer.com/article/10.1007/s00339-022-06093-9
https://www.proquest.com/docview/2722900180
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VVEj0ULUF1NCHfOAGFvvwPnxMHyFqVS4QEU4rPwlSuxslAdF_3xlnNwEESD3tYb1eaT57POOZ-QbgdZmnLrUu4oWXhguXpFwrRaz7uTa60JELEd2bD_loLK4m2aQtClt02e5dSDJo6nWxG7Udk5yyz6Mc_XAun8B2Rr47ruJxMtjoX7GKHUiB-jeVeVsq8_c5fj-ONjbmH2HRcNoM92C3NRPZYIXrPmy5-gB2fiEPPICnIXnTLJ7Dz4-h0QNH9xqBsszVU8KS7v1Y45lRc2pLx-6akAh7z1RtWTNbNpsWOGxGd_JzIldl32ocsEQIa1SD776S5q5V7dgP-5lNKXmmWXHOfp-7FzAeXn46H_G2owI3uNWWvLSZk0JG1mYGQdB5om3hcuFiVdhSxbqMtE2ct4lOnVU-c2guUvyk9EXqY52-hF6Nvz8EJrTwsRM2VsoIrdCSKHKfKWNRAUjroz7EnWAr09KNkzBuqzVRcgCjQjCqAEYl-_Bm_c1sRbbx39HHHV5Vu_EWVVIQgT2xkvXhbYfh5vW_Z3v1uOFH8CyhZRSqEo-hh4J3J2ieLPUpbA_OLs6G9Hz_5fryNKzOB6qg4Zs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RUNVyQBSKGl71obfWYh_eh48IEYVHcmkiuK38BCS6GyVbBP-esXc3gYpW6nm9tuTPHo8933wD8C1PYxNrE9DMckWZiWIqhXCq-6lUMpOB8RHd4SgdTNj5dXLdJoXNO7Z7F5L0lnqR7ObKjnHq2OdBivdwyt_BGjoDuSNyTaLjpf1lTeyAM7S_MU_bVJm3-3h9HC19zD_Cov606W_CRusmkuMG10-wYsotWH8hHrgF7z15U8234fGnL_RA8XqNQGliyluHpXv3I5UlSsxcWTryq_JE2CciSk2qaV0tS-CQqXuTnzlxVXJXYoMaISzRDB7dOMtditKQB31Fbh15pmo0Z3_PzGeY9E_HJwPaVlSgCrdaTXOdGM54oHWiEASZRlJnJmUmFJnORSjzQOrIWB3J2GhhE4Puoouf5DaLbSjjHVgtcfgvQJhkNjRMh0IoJgV6EllqE6E0GgCubdCDsJvYQrVy424y7ouFULIHo0AwCg9GwXvwffHPtBHb-Gfr_Q6vot148yLKnIC9UyXrwY8Ow-Xnv_e2-3_Nv8KHwXh4WVyejS724GPklpTPUNyHVQTBHKCrUstDvzKfAVB84Yg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK4gRAMHoqhhFbUP3rSz8-h59JEoGwQlJrqR26SfYAI9m2Ug8u-t6pndRaMmnqemJ6mvprq6q-orgNd1mbvcuoRXXhouXJZzrRSx7pfa6EonLmZ0P52Uh1NxdFqc3unij9Xui5Rk39NALE2hG8-sHy8b32gEmeRUiZ6UeCbn8h5soDtOya6n2f7KF4s-jyAF-uJclkPbzJ_X-HVrWsWbv6VI484zeQjbQ8jI9nuMH8GaCzuwdYdIcAfux0JOc_UYfnyJQx84HrURNMtcOCdc6Q6QtZ4ZNacRdeyyjUWxt0wFy9pZ167G4bAZ3c_PiWiVfQ8o0CGcAV3i-Iy8eFDBsRv7jZ1TIU3b889ez90TmE4Ovr475MN0BW5QTx2vbeGkkIm1hUFAdJlpW7lSuFRVtlaprhNtM-dtpnNnlS8cho6US6l9lftU509hPeDnd4EJLXzqhE2VMkIrjCqq0hfKWHQG0vpkBOlCsY0ZqMdJGRfNkjQ5gtEgGE0Eo5EjeLN8Z9YTb_xTem-BVzP8hFdNVhGZPTGUjeDtAsPV47-v9uz_xF_Bg8_vJ83HDyfHz2EzI4uKzYp7sI4YuBcYtXT6ZTTMn0NX5cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-induced+enhancement+of+carrier+mobility+and+optoelectronic+properties+in+antimonene%2Fgermanane+vdW+heterostructure&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Yan%2C+Jie&rft.au=Cao%2C+Dan&rft.au=Yang%2C+Xue&rft.au=Wang%2C+Jianfeng&rft.date=2022-11-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=128&rft.issue=11&rft_id=info:doi/10.1007%2Fs00339-022-06093-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_022_06093_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon