Strain-induced enhancement of carrier mobility and optoelectronic properties in antimonene/germanane vdW heterostructure
By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germana...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 128; no. 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germanane heterostructure with type-II band alignment has an indirect band gap of 1.38 eV. The band gap, band alignment, carrier mobility, and optical absorption coefficient of the heterostructure can be tuned by loading in-plane strain. In particular, the in-plane strain can drive multiple indirect–direct–indirect band gap transitions and the band-edge alignment from type-I to type-II. Moreover, the heterostructure exhibits increased hole mobility and ultra-high electron mobility up to 3 × 10
4
cm
2
V
−1
s
−1
under the tensile strain of 4%. These findings suggest large potential of antimonene/germanane heterostructure for electronic and optoelectronic applications. |
---|---|
AbstractList | By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germanane heterostructure with type-II band alignment has an indirect band gap of 1.38 eV. The band gap, band alignment, carrier mobility, and optical absorption coefficient of the heterostructure can be tuned by loading in-plane strain. In particular, the in-plane strain can drive multiple indirect–direct–indirect band gap transitions and the band-edge alignment from type-I to type-II. Moreover, the heterostructure exhibits increased hole mobility and ultra-high electron mobility up to 3 × 104 cm2 V−1 s−1 under the tensile strain of 4%. These findings suggest large potential of antimonene/germanane heterostructure for electronic and optoelectronic applications. By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of antimonene/germanane van der Waals heterostructure achieved by vertically stacking antimonene and germanene monolayers. The antimonene/germanane heterostructure with type-II band alignment has an indirect band gap of 1.38 eV. The band gap, band alignment, carrier mobility, and optical absorption coefficient of the heterostructure can be tuned by loading in-plane strain. In particular, the in-plane strain can drive multiple indirect–direct–indirect band gap transitions and the band-edge alignment from type-I to type-II. Moreover, the heterostructure exhibits increased hole mobility and ultra-high electron mobility up to 3 × 10 4 cm 2 V −1 s −1 under the tensile strain of 4%. These findings suggest large potential of antimonene/germanane heterostructure for electronic and optoelectronic applications. |
ArticleNumber | 958 |
Author | Jiao, Zhiwei Jiang, Zhouting Yan, Jie Yang, Xue Cao, Dan Shu, Haibo Wang, Jianfeng |
Author_xml | – sequence: 1 givenname: Jie surname: Yan fullname: Yan, Jie organization: College of Science, China Jiliang University – sequence: 2 givenname: Dan surname: Cao fullname: Cao, Dan email: caodan@cjlu.edu.cn organization: College of Science, China Jiliang University – sequence: 3 givenname: Xue surname: Yang fullname: Yang, Xue organization: College of Science, China Jiliang University – sequence: 4 givenname: Jianfeng surname: Wang fullname: Wang, Jianfeng organization: College of Science, China Jiliang University – sequence: 5 givenname: Zhouting surname: Jiang fullname: Jiang, Zhouting organization: College of Science, China Jiliang University – sequence: 6 givenname: Zhiwei surname: Jiao fullname: Jiao, Zhiwei organization: College of Science, China Jiliang University – sequence: 7 givenname: Haibo surname: Shu fullname: Shu, Haibo organization: College of Optical and Electronic Technology, China Jiliang University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZNvdHEX8AsGDiseQTWY10k1qkhX7702tIHgwlyHwPjMvz4xMfPBIyDGDUwbQnCUAIWQFnFewBCkquUemrBbbr4AJmYKsm6oVcnlAZim9QXk151Py-ZCjdr5y3o4GLUX_qr3BAX2moadGx-gw0iF0buXyhmpvaVjngCs0OQbvDF3HsMaYHSbqfAlkN5RyHs9eMA7aa4_0wz7TV8wYQ8pxNHmMeEj2e71KePQz5-Tp6vLx4qa6u7--vTi_q4xgMletXaCsJVi7MAhtt-SdbXBZI9ONbTXrWugsx97yTqDV_QIX0HAA2faN6Fkn5uRkt7fUfB8xZfUWxujLScUbziUAa6Gk2l3KlIopYq-Myzq74Ld6VoqB2npWO8-qeFbfnpUsKP-DrqMbdNz8D4kdlErYF1G_rf6hvgDtr5Yd |
CitedBy_id | crossref_primary_10_1039_D4RA01029A crossref_primary_10_1088_1361_6463_ad15bd |
Cites_doi | 10.1039/C5CP00875A 10.1021/acsnano.1c02327 10.1039/D1NJ00344E 10.1016/0927-0256(96)00008-0 10.1063/1.1760074 10.1002/smll.201402041 10.1103/PhysRevB.54.11169 10.1016/j.jssc.2018.10.031 10.1039/C7RA08029H 10.1103/PhysRevB.80.155453 10.1039/D1NR07150E 10.1038/nphys2954 10.1039/D0CP06213H 10.1038/srep22440 10.1021/nn4009406 10.1039/C7TC02830J 10.1038/s41467-020-16817-1 10.1021/acsaem.1c03796 10.1039/D1TC05533J 10.1038/s42254-018-0016-0 10.1103/PhysRevLett.77.3865 10.1109/TED.2022.3140363 10.1039/D0TA02847A 10.1103/PhysRevLett.113.135504 10.1039/C6TC01141A 10.1103/RevModPhys.73.515 10.1002/adfm.202007038 10.1039/D1CP03632G 10.1038/nature04233 10.1103/PhysRevE.59.1785 10.1002/anie.200906780 10.1103/PhysRevLett.102.236804 10.1016/j.jssc.2018.05.021 10.1063/1.1564060 10.1103/PhysRevB.13.5188 10.1021/acsami.1c23988 10.1002/anie.201411246 10.1002/adma.201900569 10.1016/j.trac.2018.05.008 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00339-022-06093-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0630 |
ExternalDocumentID | 10_1007_s00339_022_06093_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61775201; 62174151; 21873087 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY22A040002; LZ22F040003; LY19A040006 funderid: http://dx.doi.org/10.13039/501100004731 |
GroupedDBID | -54 -5F -5G -BR -EM -XW -XX -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WIP WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZE2 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-8d5e9490dd5ce08b62bd7e64e1a7d8a1b80bd2efd2b3edaf5e50720098f73f1b3 |
IEDL.DBID | U2A |
ISSN | 0947-8396 |
IngestDate | Fri Jul 25 11:15:26 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 00:39:36 EDT 2025 Fri Feb 21 02:44:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Strain effect First principle calculation Optoelectronic properties Carrier mobility vdW Heterostructure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8d5e9490dd5ce08b62bd7e64e1a7d8a1b80bd2efd2b3edaf5e50720098f73f1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2722900180 |
PQPubID | 2043608 |
ParticipantIDs | proquest_journals_2722900180 crossref_citationtrail_10_1007_s00339_022_06093_9 crossref_primary_10_1007_s00339_022_06093_9 springer_journals_10_1007_s00339_022_06093_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Materials Science & Processing |
PublicationTitle | Applied physics. A, Materials science & processing |
PublicationTitleAbbrev | Appl. Phys. A |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Suzuki, Iwasaki, Silva, Suehara, Watanabe, Taniguchi, Moriyama, Yoshimura, Aizawa, Nakayama (CR21) 2020; 31 Baroni, De Gironcoli, Dal Corso, Giannozzi (CR42) 2001; 73 Bianco, Butler, Jiang, Restrepo, Windl, Goldberger (CR10) 2013; 7 Bafekry, Fadlallah, Faraji, Hieu, Jappor, Stampfl, Ang, Ghergherehchi (CR6) 2022; 14 Zhang, He, Zhao, He (CR32) 2018; 265 Liao, Wu, Kovalska, Oliveira, Azadmanjiri, Mazanek, Spejchalova, Xu, Levinsky (CR12) 2022; 14 Kress, Furthmüller (CR37) 1996; 6 Bafekry, Faraji, Abdollahzadeh, Fadlallah, Chuong, Ghergherehchi, Feghhi (CR14) 2021; 45 Woods, Britnell, Eckmann, Ma, Lu, Guo, Lin, Yu, Cao, Gorbachev, Kretinin, Park, Ponomarenko, Katsnelson, Gornostyrev, Watanabe, Taniguchi, Casiraghi, Gao, Geim, Novoselov (CR27) 2014; 10 Monkhorst, Pack (CR39) 1976; 13 Hong, Ling, Wang, Zhang, Yang, Jia (CR23) 2019; 269 Balendhran, Walia, Nili, Sriram, Bhaskaran (CR5) 2015; 11 Lu, Gao, Hu, Shao (CR31) 2016; 6 Perdew, Burke, Ernzerhof (CR38) 1996; 77 Heyd, Scuseria, Ernzerhof (CR40) 2003; 118 Zhang, Zhang, Ji, Li, Ren, Li, Yuan, Wang (CR7) 2015; 17 Singh, Ahuja (CR11) 2022; 5 Huang, Alharbi, Mayer, Cuniberto, Taniguchi, Watanabe, Shabani, Shahrjerdi (CR19) 2020; 11 Jose, Rubio, Sturla, Guinea (CR28) 2014; 90 Chen, Yang, Meng, Jiang, Liang, Tan, Sun (CR22) 2015; 4 Bafekry, Obeid, Chuong, Ghergherehchi, Bagheri (CR13) 2020; 8 Tan, Liu, Ren (CR34) 2020; 29 Zheng, Cui, Yu, Chen (CR24) 2022; 69 Tong, Fang, Liu (CR26) 2019; 9 Yankowitz, Ma, Herrero, LeRoy (CR18) 2009; 1 Deschênes, Jacobberger, Deslauriers, Waller, Bouthillier, Arnold, Moutanabbi (CR20) 2019; 31 Bafekry, Gogova, Fadlallah, Chuong, Ghergherehchi, Faraji, Feghhia, Oskoeiang (CR15) 2021; 23 Heyd, Scuseria (CR41) 2004; 121 Cahangirov, Topsakal, Aktürk, Sahin, Ciraci (CR2) 2009; 102 Kress, Furthmüller (CR36) 1996; 54 Liu, Cao, Yao, Tang, Zhang, Chen, Shu (CR17) 2022; 10 Zhang, Zhang, Ji, Li, Ren, Li, Yuan, Wang (CR44) 2015; 17 Sahin, Cahangirov, Topsakal, Bekaroglu, Akturk, Senger, Ciraci (CR3) 2009; 80 Wang, Cao, Wang, Wang, Liang, Chen, Shu (CR25) 2017; 5 Bafekry, Karbasizadeh, Faraji, Bagheri, Abdolhosseini, Gogovae, Ghergherehchi (CR16) 2021; 23 Kress, Joubert (CR35) 1999; 59 Zhang, Yan, Li, Chen, Zeng (CR8) 2015; 54 Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Doubonos, Firsov (CR1) 2005; 438 Ng, Sturala, Vyskocil, Lazar, Martincova, Plutnar, Pumera (CR9) 2021; 15 Summerfield, Davies, Cheng, Korolkov, Cho, Mellor, Foxon, Khlobystov, Watanabe, Taniguchi, Eaves, Novikov, Beton (CR29) 2016; 6 van Wijk, Schuring, Katsnelson, Fasolino (CR30) 2014; 113 Li, Wang, Cai, Zhang, Wang, Ke (CR33) 2017; 7 Stoffel, Wessel, Lumey, Dronskowski (CR43) 2010; 49 Gablech, Pekárek, Klempa, Svatoš, Moghaddam, Neuzil, Pumera (CR4) 2018; 105 XY Tong (6093_CR26) 2019; 9 JP Perdew (6093_CR38) 1996; 77 A Bafekry (6093_CR14) 2021; 45 G Kress (6093_CR35) 1999; 59 S Zhang (6093_CR8) 2015; 54 H Lu (6093_CR31) 2016; 6 K Zheng (6093_CR24) 2022; 69 I Gablech (6093_CR4) 2018; 105 CR Woods (6093_CR27) 2014; 10 XY Tan (6093_CR34) 2020; 29 WX Zhang (6093_CR32) 2018; 265 A Bafekry (6093_CR6) 2022; 14 ZJ Huang (6093_CR19) 2020; 11 D Singh (6093_CR11) 2022; 5 XP Chen (6093_CR22) 2015; 4 G Kress (6093_CR36) 1996; 54 M Yankowitz (6093_CR18) 2009; 1 RW Zhang (6093_CR7) 2015; 17 S Ng (6093_CR9) 2021; 15 S Cahangirov (6093_CR2) 2009; 102 XH Li (6093_CR33) 2017; 7 G Kress (6093_CR37) 1996; 6 J Heyd (6093_CR40) 2003; 118 RW Zhang (6093_CR44) 2015; 17 H Sahin (6093_CR3) 2009; 80 PS Jose (6093_CR28) 2014; 90 S Suzuki (6093_CR21) 2020; 31 A Bafekry (6093_CR15) 2021; 23 A Summerfield (6093_CR29) 2016; 6 RP Stoffel (6093_CR43) 2010; 49 LP Liao (6093_CR12) 2022; 14 J Heyd (6093_CR41) 2004; 121 KS Novoselov (6093_CR1) 2005; 438 N Wang (6093_CR25) 2017; 5 NH Hong (6093_CR23) 2019; 269 S Baroni (6093_CR42) 2001; 73 MF Deschênes (6093_CR20) 2019; 31 HJ Monkhorst (6093_CR39) 1976; 13 MM van Wijk (6093_CR30) 2014; 113 XY Liu (6093_CR17) 2022; 10 A Bafekry (6093_CR13) 2020; 8 A Bafekry (6093_CR16) 2021; 23 E Bianco (6093_CR10) 2013; 7 S Balendhran (6093_CR5) 2015; 11 |
References_xml | – volume: 113 year: 2014 ident: CR30 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 451 year: 2014 ident: CR27 article-title: Commensurate–incommensurate transition in graphene on hexagonal boron nitride publication-title: Nat. Phys. – volume: 7 start-page: 44394 year: 2017 ident: CR33 article-title: Arsenene/Ca(OH) Van Der Walls heterostructure: strain tunable electronic and photocatalytic properties publication-title: RSC Adv. – volume: 5 start-page: 2300 year: 2022 ident: CR11 article-title: Two-dimensional perovskite/HfS van der Waals heterostructure as an absorber material for photovoltaic applications publication-title: ACS Appl. Energ. Mater. – volume: 6 start-page: 22440 year: 2016 ident: CR29 article-title: Strain-engineered graphene grown on hexagonal boron nitride by molecular beam epitaxy publication-title: Sci. Rep. – volume: 73 start-page: 515 year: 2001 end-page: 562 ident: CR42 article-title: Phonons and related crystal properties from density-functional perturbation theory publication-title: Rev. Mod. Phys. – volume: 17 start-page: 12194 year: 2015 ident: CR7 article-title: Tunable electronic properties in van der Waals heterostructure germanene/germanane publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 13248 year: 2020 ident: CR13 article-title: Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt HgSe ): van der Waals heterostructures with novel optoelectronic and thermoelectric performances publication-title: J. Mater. Chem. – volume: 7 start-page: 4414 year: 2013 ident: CR10 article-title: Stability and exfoliation of germanane: a germanium graphane analogue publication-title: ACS Nano – volume: 14 start-page: 5412 year: 2022 ident: CR12 article-title: InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors publication-title: Nanoscale – volume: 90 year: 2014 ident: CR28 article-title: Spontaneous strains and gap in graphene on boron nitride publication-title: Phys. Rev. B – volume: 10 start-page: 1984 year: 2022 end-page: 1990 ident: CR17 article-title: Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI /GaN heterojunction publication-title: J. Mater. Chem. C – volume: 54 start-page: 3112 year: 2015 ident: CR8 article-title: Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 9687 year: 2017 ident: CR25 article-title: Interface effect on electronic and optical properties of antimonene/GaAs van der Waals heterostructures publication-title: J. Mater. Chem. C – volume: 102 year: 2009 ident: CR2 article-title: Two- and one-dimensional honeycomb structures of silicon and germanium publication-title: Phys. Rev. Lett. – volume: 77 start-page: 3865 year: 1996 ident: CR38 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 11 start-page: 640 year: 2015 end-page: 652 ident: CR5 article-title: Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene publication-title: Small – volume: 11 start-page: 3029 year: 2020 ident: CR19 article-title: Versatile construction of van der Waals heterostructures using a dual-function polymeric film publication-title: Nat. Commu. – volume: 59 start-page: 1785 year: 1999 ident: CR35 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 13 start-page: 5188 year: 1976 ident: CR39 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 14 start-page: 21577 year: 2022 end-page: 215784 ident: CR6 article-title: Puckered penta-like PdPX (X = O, S, Te) semiconducting nanosheets: first-principles study of the mechanical, electro-optical, and photocatalytic properties publication-title: ACS Appl. Mater. Inter. – volume: 269 start-page: 513 year: 2019 ident: CR23 article-title: Intriguing electronic properties of germanene/indium selenide and antimonene/indium selenide heterostructures publication-title: J. Solid State Chem. – volume: 105 start-page: 251 year: 2018 end-page: 262 ident: CR4 article-title: Monoelemental 2D materials-based field effect transistors for sensing and biosensing: phosphorene, antimonene, arsenene, silicene, and germanene go beyond grapheme publication-title: Trends Anal. Chem. – volume: 4 start-page: 5434 year: 2015 ident: CR22 article-title: The electronic and optical properties of novel germanene and antimonene heterostructure publication-title: J. Mater. Chem. C – volume: 49 start-page: 5242 year: 2010 end-page: 5266 ident: CR43 article-title: Ab initio thermochemistry of solid-state materials publication-title: Angew. Chem. Int. Ed. – volume: 45 start-page: 8291 year: 2021 ident: CR14 article-title: A van der Waals heterostructure of MoS /MoSi N : a first-principles study publication-title: New J. Chem. – volume: 6 year: 2016 ident: CR31 article-title: Biaxial strain effect on electronic structure tuning in antimonene-based Van Der Walls heterostrutures publication-title: RSC Adv. – volume: 1 start-page: 112 year: 2009 ident: CR18 article-title: van der Waals heterostructures combining graphene and hexagonal boron nitride publication-title: Nat. Rev. Phys. – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR1 article-title: Two-dimensional gas of massless Dirac fermions in grapheme publication-title: Nature – volume: 80 year: 2009 ident: CR3 article-title: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations publication-title: Phys. Rev. B – volume: 29 year: 2020 ident: CR34 article-title: Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain publication-title: Chin. Phys. B – volume: 6 start-page: 15 year: 1996 ident: CR37 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 31 start-page: 2007038 year: 2020 ident: CR21 article-title: Direct growth of germanene at interfaces between van der Waals materials and Ag(111) publication-title: Adv. Funct. Mater. – volume: 121 start-page: 1187 year: 2004 ident: CR41 article-title: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional publication-title: J. Chem. Phys. – volume: 23 start-page: 4865 year: 2021 ident: CR15 article-title: Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 8207 year: 2003 ident: CR40 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. – volume: 23 start-page: 21196 year: 2021 ident: CR16 article-title: van der Waals heterostructure of graphene and germanane: tuning the ohmic contact by electrostatic gating and mechanical strain publication-title: Phys. Chem. Chem. Phys. – volume: 9 year: 2019 ident: CR26 article-title: Strain-induced electronic properties of van der Waals heterostructures based on tin dichalcogenides publication-title: AIP Adv. – volume: 54 start-page: 11169 year: 1996 ident: CR36 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 69 start-page: 1155 year: 2022 ident: CR24 article-title: Indium selenide/antimonene heterostructure for multifunctional optoelectronics publication-title: IEEE T. Electron Dev. – volume: 17 start-page: 12194 year: 2015 end-page: 12198 ident: CR44 article-title: Tunable electronic properties in the van der Waals heterostructure of germanene/germanane publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 11681 year: 2021 ident: CR9 article-title: Two-dimensional functionalized germananes as photoelectrocatalysts publication-title: ACS Nano – volume: 31 start-page: 1900569 year: 2019 ident: CR20 article-title: Dynamics of antimonene-graphene van der Waals growth publication-title: Adv. Mater. – volume: 265 start-page: 257 year: 2018 ident: CR32 article-title: Electronic properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures under in-plane biaxial strains publication-title: J. Solid State Chem. – volume: 17 start-page: 12194 year: 2015 ident: 6093_CR7 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00875A – volume: 15 start-page: 11681 year: 2021 ident: 6093_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.1c02327 – volume: 45 start-page: 8291 year: 2021 ident: 6093_CR14 publication-title: New J. Chem. doi: 10.1039/D1NJ00344E – volume: 6 start-page: 15 year: 1996 ident: 6093_CR37 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 121 start-page: 1187 year: 2004 ident: 6093_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.1760074 – volume: 11 start-page: 640 year: 2015 ident: 6093_CR5 publication-title: Small doi: 10.1002/smll.201402041 – volume: 17 start-page: 12194 year: 2015 ident: 6093_CR44 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00875A – volume: 54 start-page: 11169 year: 1996 ident: 6093_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 90 year: 2014 ident: 6093_CR28 publication-title: Phys. Rev. B – volume: 269 start-page: 513 year: 2019 ident: 6093_CR23 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.10.031 – volume: 7 start-page: 44394 year: 2017 ident: 6093_CR33 publication-title: RSC Adv. doi: 10.1039/C7RA08029H – volume: 29 year: 2020 ident: 6093_CR34 publication-title: Chin. Phys. B – volume: 80 year: 2009 ident: 6093_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.155453 – volume: 14 start-page: 5412 year: 2022 ident: 6093_CR12 publication-title: Nanoscale doi: 10.1039/D1NR07150E – volume: 10 start-page: 451 year: 2014 ident: 6093_CR27 publication-title: Nat. Phys. doi: 10.1038/nphys2954 – volume: 23 start-page: 4865 year: 2021 ident: 6093_CR15 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP06213H – volume: 6 start-page: 22440 year: 2016 ident: 6093_CR29 publication-title: Sci. Rep. doi: 10.1038/srep22440 – volume: 7 start-page: 4414 year: 2013 ident: 6093_CR10 publication-title: ACS Nano doi: 10.1021/nn4009406 – volume: 5 start-page: 9687 year: 2017 ident: 6093_CR25 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02830J – volume: 11 start-page: 3029 year: 2020 ident: 6093_CR19 publication-title: Nat. Commu. doi: 10.1038/s41467-020-16817-1 – volume: 5 start-page: 2300 year: 2022 ident: 6093_CR11 publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.1c03796 – volume: 10 start-page: 1984 year: 2022 ident: 6093_CR17 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC05533J – volume: 1 start-page: 112 year: 2009 ident: 6093_CR18 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0016-0 – volume: 77 start-page: 3865 year: 1996 ident: 6093_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 69 start-page: 1155 year: 2022 ident: 6093_CR24 publication-title: IEEE T. Electron Dev. doi: 10.1109/TED.2022.3140363 – volume: 8 start-page: 13248 year: 2020 ident: 6093_CR13 publication-title: J. Mater. Chem. doi: 10.1039/D0TA02847A – volume: 113 year: 2014 ident: 6093_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.135504 – volume: 4 start-page: 5434 year: 2015 ident: 6093_CR22 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01141A – volume: 73 start-page: 515 year: 2001 ident: 6093_CR42 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.515 – volume: 31 start-page: 2007038 year: 2020 ident: 6093_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007038 – volume: 23 start-page: 21196 year: 2021 ident: 6093_CR16 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP03632G – volume: 438 start-page: 197 year: 2005 ident: 6093_CR1 publication-title: Nature doi: 10.1038/nature04233 – volume: 59 start-page: 1785 year: 1999 ident: 6093_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevE.59.1785 – volume: 49 start-page: 5242 year: 2010 ident: 6093_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906780 – volume: 102 year: 2009 ident: 6093_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.236804 – volume: 265 start-page: 257 year: 2018 ident: 6093_CR32 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.05.021 – volume: 118 start-page: 8207 year: 2003 ident: 6093_CR40 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 13 start-page: 5188 year: 1976 ident: 6093_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 14 start-page: 21577 year: 2022 ident: 6093_CR6 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.1c23988 – volume: 54 start-page: 3112 year: 2015 ident: 6093_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411246 – volume: 31 start-page: 1900569 year: 2019 ident: 6093_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201900569 – volume: 6 year: 2016 ident: 6093_CR31 publication-title: RSC Adv. – volume: 105 start-page: 251 year: 2018 ident: 6093_CR4 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2018.05.008 – volume: 9 year: 2019 ident: 6093_CR26 publication-title: AIP Adv. |
SSID | ssj0000422 |
Score | 2.4015207 |
Snippet | By means of first-principles calculations, we report the in-plane strain effect on the structural stability, electronic structures, and optical properties of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorptivity Alignment Applied physics Carrier mobility Characterization and Evaluation of Materials Condensed Matter Physics Electron mobility Energy gap First principles Heterostructures Hole mobility Machines Manufacturing Materials science Nanotechnology Optical and Electronic Materials Optical properties Optoelectronics Physics Physics and Astronomy Plane strain Processes Structural stability Surfaces and Interfaces Tensile strain Thin Films Two dimensional materials |
Title | Strain-induced enhancement of carrier mobility and optoelectronic properties in antimonene/germanane vdW heterostructure |
URI | https://link.springer.com/article/10.1007/s00339-022-06093-9 https://www.proquest.com/docview/2722900180 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VVEj0ULUF1NCHfOAGFvvwPnxMHyFqVS4QEU4rPwlSuxslAdF_3xlnNwEESD3tYb1eaT57POOZ-QbgdZmnLrUu4oWXhguXpFwrRaz7uTa60JELEd2bD_loLK4m2aQtClt02e5dSDJo6nWxG7Udk5yyz6Mc_XAun8B2Rr47ruJxMtjoX7GKHUiB-jeVeVsq8_c5fj-ONjbmH2HRcNoM92C3NRPZYIXrPmy5-gB2fiEPPICnIXnTLJ7Dz4-h0QNH9xqBsszVU8KS7v1Y45lRc2pLx-6akAh7z1RtWTNbNpsWOGxGd_JzIldl32ocsEQIa1SD776S5q5V7dgP-5lNKXmmWXHOfp-7FzAeXn46H_G2owI3uNWWvLSZk0JG1mYGQdB5om3hcuFiVdhSxbqMtE2ct4lOnVU-c2guUvyk9EXqY52-hF6Nvz8EJrTwsRM2VsoIrdCSKHKfKWNRAUjroz7EnWAr09KNkzBuqzVRcgCjQjCqAEYl-_Bm_c1sRbbx39HHHV5Vu_EWVVIQgT2xkvXhbYfh5vW_Z3v1uOFH8CyhZRSqEo-hh4J3J2ieLPUpbA_OLs6G9Hz_5fryNKzOB6qg4Zs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RUNVyQBSKGl71obfWYh_eh48IEYVHcmkiuK38BCS6GyVbBP-esXc3gYpW6nm9tuTPHo8933wD8C1PYxNrE9DMckWZiWIqhXCq-6lUMpOB8RHd4SgdTNj5dXLdJoXNO7Z7F5L0lnqR7ObKjnHq2OdBivdwyt_BGjoDuSNyTaLjpf1lTeyAM7S_MU_bVJm3-3h9HC19zD_Cov606W_CRusmkuMG10-wYsotWH8hHrgF7z15U8234fGnL_RA8XqNQGliyluHpXv3I5UlSsxcWTryq_JE2CciSk2qaV0tS-CQqXuTnzlxVXJXYoMaISzRDB7dOMtditKQB31Fbh15pmo0Z3_PzGeY9E_HJwPaVlSgCrdaTXOdGM54oHWiEASZRlJnJmUmFJnORSjzQOrIWB3J2GhhE4Puoouf5DaLbSjjHVgtcfgvQJhkNjRMh0IoJgV6EllqE6E0GgCubdCDsJvYQrVy424y7ouFULIHo0AwCg9GwXvwffHPtBHb-Gfr_Q6vot148yLKnIC9UyXrwY8Ow-Xnv_e2-3_Nv8KHwXh4WVyejS724GPklpTPUNyHVQTBHKCrUstDvzKfAVB84Yg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK4gRAMHoqhhFbUP3rSz8-h59JEoGwQlJrqR26SfYAI9m2Ug8u-t6pndRaMmnqemJ6mvprq6q-orgNd1mbvcuoRXXhouXJZzrRSx7pfa6EonLmZ0P52Uh1NxdFqc3unij9Xui5Rk39NALE2hG8-sHy8b32gEmeRUiZ6UeCbn8h5soDtOya6n2f7KF4s-jyAF-uJclkPbzJ_X-HVrWsWbv6VI484zeQjbQ8jI9nuMH8GaCzuwdYdIcAfux0JOc_UYfnyJQx84HrURNMtcOCdc6Q6QtZ4ZNacRdeyyjUWxt0wFy9pZ167G4bAZ3c_PiWiVfQ8o0CGcAV3i-Iy8eFDBsRv7jZ1TIU3b889ez90TmE4Ovr475MN0BW5QTx2vbeGkkIm1hUFAdJlpW7lSuFRVtlaprhNtM-dtpnNnlS8cho6US6l9lftU509hPeDnd4EJLXzqhE2VMkIrjCqq0hfKWHQG0vpkBOlCsY0ZqMdJGRfNkjQ5gtEgGE0Eo5EjeLN8Z9YTb_xTem-BVzP8hFdNVhGZPTGUjeDtAsPV47-v9uz_xF_Bg8_vJ83HDyfHz2EzI4uKzYp7sI4YuBcYtXT6ZTTMn0NX5cQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-induced+enhancement+of+carrier+mobility+and+optoelectronic+properties+in+antimonene%2Fgermanane+vdW+heterostructure&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Yan%2C+Jie&rft.au=Cao%2C+Dan&rft.au=Yang%2C+Xue&rft.au=Wang%2C+Jianfeng&rft.date=2022-11-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=128&rft.issue=11&rft_id=info:doi/10.1007%2Fs00339-022-06093-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_022_06093_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon |