VGG-ICNN: A Lightweight CNN model for crop disease identification

Crop diseases cause a substantial loss in the quantum and quality of agricultural production. Regular monitoring may help in early stage disease detection an d thereby reduction in crop loss. An automatic plant disease identification system based on visual symptoms can provide a smart agriculture so...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 1; pp. 497 - 520
Main Authors Thakur, Poornima Singh, Sheorey, Tanuja, Ojha, Aparajita
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Crop diseases cause a substantial loss in the quantum and quality of agricultural production. Regular monitoring may help in early stage disease detection an d thereby reduction in crop loss. An automatic plant disease identification system based on visual symptoms can provide a smart agriculture solution to such problems. Various solutions for plant disease identification have been provided by researchers using image processing, machine learning and deep learning techniques. In this paper a lightweight Convolutional Neural Network ‘VGG-ICNN’ is introduced for the identification of crop diseases using plant-leaf images. VGG-ICNN consists of around 6 million parameters that are substantially fewer than most of the available high performing deep learning models. The performance of the model is evaluated on five different public datasets covering a large number of crop varieties. These include multiple crop species datasets: PlantVillage and Embrapa with 38 and 93 categories, respectively, and single crop datasets: Apple, Maize, and Rice, each with four, four, and five categories, respectively. Experimental results demonstrate that the method outperforms some of the recent deep learning approaches on crop disease identification, with 99.16% accuracy on the PlantVillage dataset. The model is also shown to perform consistently well on all the five datasets, as compared with some recent lightweight CNN models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-022-13144-z