Machine learning models and techniques for VANET based traffic management: Implementation issues and challenges

Low latency in communication among the vehicles and RSUs, smooth traffic flow, and road safety are the major concerns of the Intelligent Transportation Systems. Vehicular Ad hoc Network (VANET) has gained attention from various research communities for such a matters. These systems need constant mon...

Full description

Saved in:
Bibliographic Details
Published inPeer-to-peer networking and applications Vol. 14; no. 3; pp. 1778 - 1805
Main Authors Khatri, Sahil, Vachhani, Hrishikesh, Shah, Shalin, Bhatia, Jitendra, Chaturvedi, Manish, Tanwar, Sudeep, Kumar, Neeraj
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low latency in communication among the vehicles and RSUs, smooth traffic flow, and road safety are the major concerns of the Intelligent Transportation Systems. Vehicular Ad hoc Network (VANET) has gained attention from various research communities for such a matters. These systems need constant monitoring for proper functioning, opening the doors to apply Machine Learning algorithms on enormous data generated from different applications in VANET (for example, crowdsourcing, pollution control, environment monitoring, etc.). Machine Learning is an approach where the system automatically learns and improves itself based on previously processed data. These algorithms provide efficient supervised and unsupervised learning of these collected data, which effectively implements VANET’s objective. We highlighted the safety, communication, and traffic-related issues in VANET systems and their implementation in-feasibility and explored how machine learning algorithms can overcome these issues. Finally, we discussed future direction and challenges, along with a case study depicting a VANET based scenario.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1936-6442
1936-6450
DOI:10.1007/s12083-020-00993-4