Improving transparency of deep neural inference process
Deep learning techniques are rapidly advanced recently and becoming a necessity component for widespread systems. However, the inference process of deep learning is black box and is not very suitable to safety-critical systems which must exhibit high transparency. In this paper, to address this blac...
Saved in:
Published in | Progress in artificial intelligence Vol. 8; no. 2; pp. 273 - 285 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deep learning techniques are rapidly advanced recently and becoming a necessity component for widespread systems. However, the inference process of deep learning is black box and is not very suitable to safety-critical systems which must exhibit high transparency. In this paper, to address this black-box limitation, we develop a simple analysis method which consists of (1) structural feature analysis: lists of the features contributing to inference process, (2) linguistic feature analysis: lists of the natural language labels describing the visual attributes for each feature contributing to inference process, and (3) consistency analysis: measuring consistency among input data, inference (label), and the result of our structural and linguistic feature analysis. Our analysis is simplified to reflect the actual inference process for high transparency, whereas it does not include any additional black-box mechanisms such as LSTM for highly human readable results. We conduct experiments and discuss the results of our analysis qualitatively and quantitatively and come to believe that our work improves the transparency of neural networks. Evaluated through 12,800 human tasks, 75% workers answer that input data and result of our feature analysis are consistent, and 70% workers answer that inference (label) and result of our feature analysis are consistent. In addition to the evaluation of the proposed analysis, we find that our analysis also provides suggestions, or possible next actions such as expanding neural network complexity or collecting training data to improve a neural network. |
---|---|
ISSN: | 2192-6352 2192-6360 |
DOI: | 10.1007/s13748-019-00179-x |