The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers’ equation
A novel fourth-order three-point compact operator for the nonlinear convection term u u x is provided in this paper. The operator makes the numerical analysis of higher-order difference schemes become possible for a wide class of nonlinear evolutionary equations under the unified framework. We take...
Saved in:
Published in | Advances in computational mathematics Vol. 47; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel fourth-order three-point compact operator for the nonlinear convection term
u
u
x
is provided in this paper. The operator makes the numerical analysis of higher-order difference schemes become possible for a wide class of nonlinear evolutionary equations under the unified framework. We take the classical viscous Burgers’ equation as an example and establish a new conservative fourth-order implicit compact difference scheme based on the method of order reduction. A detailed theoretical analysis is carried out by the discrete energy argument and mathematical induction. It is rigorously proved that the difference scheme is conservative, uniquely solvable, stable, and unconditionally convergent in discrete
L
∞
-norm. The convergence order is two in time and four in space, respectively. Furthermore, we derive a three-level linearized compact difference scheme for viscous Burgers’ equation based on the proposed operator. All numerically theoretical results similar to that of the nonlinear numerical scheme are inherited completely; meanwhile, it is more time saving. Applying the compact operator to other more complex and higher-order nonlinear evolutionary equations is feasible, including Benjamin-Bona-Mahony-Burgers’ equation, Korteweg-de Vries equation, Kuramoto-Sivashinsky equation, and classification to name a few. Numerical results demonstrate that the presented schemes for Burgers’ equation can achieve second-order accuracy in time and fourth-order accuracy in space in
L
∞
-norm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-021-09848-9 |