Further Results on Input-to-State Stability of Stochastic Cohen–Grossberg BAM Neural Networks with Probabilistic Time-Varying Delays

In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-va...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 54; no. 1; pp. 613 - 635
Main Authors Chandrasekar, A., Radhika, T., Zhu, Quanxin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-021-10649-w

Cover

Loading…
Abstract In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-varying delay and it is transformed into one with deterministic time-varying delay in the stochastic manner. Further, by constructing a novel Lyapunov–Krasovskii functional and utilizing Ito’s and Dynkin’s formula with stochastic analysis theory, the sufficient criterion is derived for the input-to-state stability of stochastic CGBAM neural networks. Finally, numerical examples are provided to examine the merits of the given method.
AbstractList In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-varying delay and it is transformed into one with deterministic time-varying delay in the stochastic manner. Further, by constructing a novel Lyapunov–Krasovskii functional and utilizing Ito’s and Dynkin’s formula with stochastic analysis theory, the sufficient criterion is derived for the input-to-state stability of stochastic CGBAM neural networks. Finally, numerical examples are provided to examine the merits of the given method.
Author Radhika, T.
Chandrasekar, A.
Zhu, Quanxin
Author_xml – sequence: 1
  givenname: A.
  surname: Chandrasekar
  fullname: Chandrasekar, A.
  organization: Department of Mathematics, Sona College of Arts and Science
– sequence: 2
  givenname: T.
  surname: Radhika
  fullname: Radhika, T.
  email: radhigru@gmail.com
  organization: Department of Mathematics, Muthayammal Engineering College, School of Electronic Information and Electrical Engineering, Chengdu University
– sequence: 3
  givenname: Quanxin
  surname: Zhu
  fullname: Zhu, Quanxin
  organization: MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University
BookMark eNp9kMtOGzEUQK0KpELoD3RlqWuDH5PxzBLCo5EoIEqr7iyP505imNjB9ijKrqv-QP-QL6lJKiGxyMb3WrrnPs4h2nPeAUKfGT1mlMqTyBgtBaGckZwUNVl9QAdsLAWRUvzay7mQlBQlZx_RYYyPlGaM0wP053IIaQ4B30Mc-hSxd3jqlkMiyZPvSSfA-W1sb9Ma-y5_vJnrmKzBEz8H9_L771XwMTYQZvjs9Bu-gSHoPoe08uEp4pVNc3wXfLNpsgEf7ALITx3W1s3wOfR6HY_Qfqf7CJ_-xxH6cXnxMPlKrm-vppPTa2IEqxORZV3yIh_Y1Bw6zpkZQ2EqKLlsTVsVXBtdmJa2jZDjSkPb1ILrztRa1xJoK0boy7bvMvjnAWJSj34ILo9UvGaVKApWlrmKb6vM62kBOrUMdpEXVoyqV99q61tl32rjW60yVL2DjM3-rHcpaNvvRsUWjXmOm0F422oH9Q90s5sX
CitedBy_id crossref_primary_10_1007_s10489_024_06002_y
crossref_primary_10_1007_s11571_023_10010_y
crossref_primary_10_1016_j_chaos_2023_113658
crossref_primary_10_1016_j_neunet_2023_08_046
crossref_primary_10_1002_asjc_3059
crossref_primary_10_1007_s00034_024_02971_0
crossref_primary_10_1016_j_cnsns_2023_107535
crossref_primary_10_1007_s11071_024_09404_2
crossref_primary_10_1016_j_heliyon_2023_e22533
crossref_primary_10_1007_s00034_024_02952_3
crossref_primary_10_1007_s42979_024_03285_3
crossref_primary_10_1016_j_camwa_2023_04_011
crossref_primary_10_1016_j_asoc_2023_111131
crossref_primary_10_1007_s40314_023_02447_y
crossref_primary_10_1016_j_engappai_2025_110004
crossref_primary_10_1016_j_neucom_2024_128945
crossref_primary_10_1016_j_engappai_2025_110484
crossref_primary_10_1016_j_engappai_2024_109487
crossref_primary_10_1016_j_neucom_2024_128940
crossref_primary_10_1016_j_neunet_2024_106893
crossref_primary_10_1080_02286203_2024_2437830
crossref_primary_10_1016_j_ins_2024_121777
crossref_primary_10_1016_j_heliyon_2024_e38524
crossref_primary_10_1016_j_neunet_2024_106511
crossref_primary_10_1007_s10489_025_06228_4
crossref_primary_10_1007_s11071_023_09264_2
crossref_primary_10_1016_j_knosys_2024_112728
crossref_primary_10_1007_s11063_024_11494_3
crossref_primary_10_1007_s11571_023_10002_y
crossref_primary_10_1016_j_neunet_2023_11_015
crossref_primary_10_1016_j_engappai_2024_109845
crossref_primary_10_1016_j_ijar_2025_109422
crossref_primary_10_3233_JIFS_230821
crossref_primary_10_1007_s42979_024_03253_x
crossref_primary_10_1007_s42979_024_03020_y
crossref_primary_10_3390_axioms12090820
crossref_primary_10_1016_j_nls_2024_100004
crossref_primary_10_1007_s43069_024_00409_6
crossref_primary_10_1016_j_neunet_2025_107319
crossref_primary_10_1007_s12555_022_0598_2
crossref_primary_10_1016_j_knosys_2024_112591
crossref_primary_10_1007_s11063_024_11509_z
crossref_primary_10_1016_j_aej_2023_12_029
crossref_primary_10_1016_j_engappai_2024_109993
crossref_primary_10_1016_j_neucom_2025_129444
crossref_primary_10_1007_s10489_024_06084_8
crossref_primary_10_1007_s11571_024_10096_y
crossref_primary_10_1016_j_neunet_2024_106149
Cites_doi 10.1007/s11424-020-8048-9
10.1016/j.neucom.2017.11.028
10.1016/j.nahs.2010.03.007
10.1016/j.cam.2010.10.035
10.1016/j.neucom.2017.10.038
10.1016/S0005-1098(01)00071-1
10.1007/s12555-017-0703-0
10.1007/s11071-015-2241-8
10.1016/j.chaos.2018.07.021
10.1016/j.neucom.2014.01.018
10.1016/j.physleta.2019.01.015
10.1109/21.87054
10.1016/S0005-1098(99)00037-0
10.1137/090746483
10.1016/j.neunet.2020.02.020
10.1007/s11063-017-9622-6
10.1016/j.neucom.2016.08.101
10.1109/ACCESS.2021.3066585
10.1016/j.matcom.2019.04.001
10.1016/j.neucom.2008.07.006
10.1109/ACCESS.2020.2997905
10.1016/j.cnsns.2013.05.024
10.1016/j.neucom.2013.08.028
10.1016/j.neunet.2011.07.006
10.1016/j.neunet.2018.02.003
10.1016/j.chaos.2009.03.090
10.1016/j.neucom.2019.09.033
10.1109/9.989067
10.1016/j.neucom.2009.04.022
10.1016/j.neunet.2017.11.001
10.1016/j.neucom.2008.08.010
10.1016/j.nahs.2010.08.005
10.1016/j.neucom.2019.10.089
10.1016/j.neunet.2017.11.017
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Copyright Springer Nature B.V. Feb 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Copyright Springer Nature B.V. Feb 2022
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-021-10649-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 635
ExternalDocumentID 10_1007_s11063_021_10649_w
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-769624064b92ef221c5e4c8e627dcd842aca4cd0db3758aedb932afc9aa97e0d3
IEDL.DBID U2A
ISSN 1370-4621
IngestDate Wed Aug 13 09:03:08 EDT 2025
Tue Jul 01 01:09:35 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Fri Feb 21 02:47:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cohen–Grossberg BAM neural networks
Stochastic systems
Input-to-state stability
Probabilistic time-varying delay
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-769624064b92ef221c5e4c8e627dcd842aca4cd0db3758aedb932afc9aa97e0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918344166
PQPubID 2043838
PageCount 23
ParticipantIDs proquest_journals_2918344166
crossref_primary_10_1007_s11063_021_10649_w
crossref_citationtrail_10_1007_s11063_021_10649_w
springer_journals_10_1007_s11063_021_10649_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Xu, Bao (CR4) 2020; 376
Cong, Han, Zhang (CR6) 2020; 379
Zhao, Kurthsb, Duan (CR3) 2019; 383
Faydasicok (CR27) 2020; 125
Li, Chen, Zhao (CR29) 2009; 72
Du, Zhong, Zhou (CR9) 2014; 243
Wen, Sun (CR30) 2009; 42
Li, Li, Huang, Zhang (CR16) 2018; 98
Zhao, Kurths, Duan (CR36) 2018; 114
Guo, Luo, Wang, Luo, Ge, Kurths, Yuan, Gao (CR5) 2019; 17
Yang, Yu, Cao, Alsaadi, Hayat (CR14) 2018; 98
Sriraman, Cao, Samidurai (CR20) 2020; 171
Maharajan, Raja, Cao, Rajchakit, Alsaedi (CR15) 2018; 275
Xiang, Cao (CR33) 2009; 72
Zhang, Liu, Zhou (CR12) 2012; 25
Li (CR32) 2009; 215
Li, Fu (CR10) 2011; 235
Kosko (CR1) 1988; 18
Nagamani, Radhika (CR21) 2015; 82
Li, Zhou, Yang (CR37) 2017; 227
Rakkiyappan, Balasubramaniam (CR35) 2010; 4
Hui, Zhang, Zhang, Iu, Yao, Bai (CR18) 2021; 9
Chaouki, Farah (CR13) 2020; 33
Li, Zhang, Zhang, Li (CR11) 2010; 215
Dashkovskiy, Ruffer, Wirth (CR25) 2010; 48
Du, Zhong, Zhou, Shi, Cheng (CR34) 2014; 127
Zhu, Rakkiyappan, Chandrasekar (CR8) 2014; 136
Ali, Saravanan, Esther Rani, Elakkia, Cao, Alsaedi, Hayat (CR28) 2017; 46
Cong, Han, Zhang (CR17) 2020
Arslan, Basar (CR24) 2001; 37
Angeli (CR22) 1999; 35
Liu, Wang, Shen, Huang, Alsaadi (CR19) 2018; 102
Guo, Zhang, Liu, Lin, Wang, Chen (CR38) 2018; 275
Li (CR31) 2009; 73
Freeman, Kokotovic (CR26) 2008
Zhu, Huang, Yang (CR2) 2011; 5
Rao, Zhong, Wang (CR7) 2014; 19
Angeli (CR23) 2002; 47
Q Zhu (10649_CR8) 2014; 136
M Hui (10649_CR18) 2021; 9
Q Zhu (10649_CR2) 2011; 5
X Li (10649_CR10) 2011; 235
R Guo (10649_CR38) 2018; 275
Y Zhao (10649_CR3) 2019; 383
C Maharajan (10649_CR15) 2018; 275
S Dashkovskiy (10649_CR25) 2010; 48
Y Cong (10649_CR6) 2020; 379
D Angeli (10649_CR23) 2002; 47
A Chaouki (10649_CR13) 2020; 33
O Faydasicok (10649_CR27) 2020; 125
J Li (10649_CR37) 2017; 227
X Li (10649_CR31) 2009; 73
H Liu (10649_CR19) 2018; 102
X Li (10649_CR32) 2009; 215
G Nagamani (10649_CR21) 2015; 82
Y Zhao (10649_CR36) 2018; 114
RA Freeman (10649_CR26) 2008
R Rao (10649_CR7) 2014; 19
Y Du (10649_CR9) 2014; 243
B Kosko (10649_CR1) 1988; 18
H Xiang (10649_CR33) 2009; 72
G Xu (10649_CR4) 2020; 376
Y Guo (10649_CR5) 2019; 17
H Li (10649_CR16) 2018; 98
MS Ali (10649_CR28) 2017; 46
G Arslan (10649_CR24) 2001; 37
Y Cong (10649_CR17) 2020
K Li (10649_CR11) 2010; 215
R Sriraman (10649_CR20) 2020; 171
D Angeli (10649_CR22) 1999; 35
Y Du (10649_CR34) 2014; 127
Z Wen (10649_CR30) 2009; 42
R Rakkiyappan (10649_CR35) 2010; 4
Z Zhang (10649_CR12) 2012; 25
W Yang (10649_CR14) 2018; 98
Y Li (10649_CR29) 2009; 72
References_xml – volume: 33
  start-page: 944
  year: 2020
  end-page: 967
  ident: CR13
  article-title: New results on interval general Cohen–Grossberg BAM neural networks
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-020-8048-9
– volume: 215
  start-page: 292
  year: 2009
  end-page: 307
  ident: CR32
  article-title: Existence and global exponential stability of periodic solution for impulsive Cohen–Grossberg-type BAM neural networks with continuously distributed delays
  publication-title: Appl Math Comput
– volume: 275
  start-page: 2588
  year: 2018
  end-page: 2602
  ident: CR15
  article-title: Impulsive Cohen–Grossberg BAM neural networks with mixed time-delays: an exponential stability analysis issue
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.028
– volume: 4
  start-page: 600
  year: 2010
  end-page: 607
  ident: CR35
  article-title: Delay-probability-distribution-dependent stability of uncertain stochastic genetic regulatory networks with mixed time-varying delays: an LMI approach
  publication-title: Nonlinear Anal Hybrid Syst
  doi: 10.1016/j.nahs.2010.03.007
– volume: 235
  start-page: 3385
  year: 2011
  end-page: 3394
  ident: CR10
  article-title: Global asymptotic stability of stochastic Cohen–Grossberg type BAM neural networks with mixed delays: an LMI approach
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2010.10.035
– volume: 275
  start-page: 2041
  year: 2018
  end-page: 2054
  ident: CR38
  article-title: Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.038
– year: 2008
  ident: CR26
  publication-title: Robust nonlinear control design: state-space and Lyapunov techniques
– volume: 37
  start-page: 1175
  year: 2001
  end-page: 1188
  ident: CR24
  article-title: Disturbance attenuating controller design for strict-feedback systems with structurally unknown dynamics
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00071-1
– volume: 17
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR5
  article-title: Fixed-time synchronization of complex-valued memristive BAM neural network and applications in image encryption and decryption
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-017-0703-0
– volume: 82
  start-page: 1325
  year: 2015
  end-page: 1341
  ident: CR21
  article-title: Dissipativity and passivity analysis of T-S fuzzy neural networks with probabilistic time-varying delays: a quadratic convex combination approach
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2241-8
– volume: 114
  start-page: 364
  year: 2018
  end-page: 369
  ident: CR36
  article-title: Input-to-state stability analysis for memristive Cohen–Grossberg-type neural networks with variable time delays
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.021
– volume: 136
  start-page: 136
  year: 2014
  end-page: 151
  ident: CR8
  article-title: Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.018
– volume: 383
  start-page: 1143
  year: 2019
  end-page: 1150
  ident: CR3
  article-title: Input-to-state stability analysis for Memristive BAM neural networks with variable time delays
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2019.01.015
– volume: 18
  start-page: 49
  year: 1988
  end-page: 60
  ident: CR1
  article-title: Bi-directional associative memories
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.87054
– volume: 35
  start-page: 1285
  year: 1999
  end-page: 1290
  ident: CR22
  article-title: Input-to-state stability of PD-controlled robotic systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00037-0
– volume: 48
  start-page: 4089
  year: 2010
  end-page: 4118
  ident: CR25
  article-title: Small gain theorems for large scale systems and construction of ISS Lyapunov functions
  publication-title: SIAM J Control Optim
  doi: 10.1137/090746483
– volume: 125
  start-page: 330
  year: 2020
  end-page: 337
  ident: CR27
  article-title: New criteria for global stability of neutral-type Cohen–Grossberg neural networks with multiple delays
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.02.020
– volume: 46
  start-page: 991
  year: 2017
  end-page: 1007
  ident: CR28
  article-title: Asymptotic stability of Cohen–Grossberg BAM neutral type neural networks with distributed time varying delays
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9622-6
– volume: 227
  start-page: 37
  year: 2017
  end-page: 45
  ident: CR37
  article-title: State estimation and input-to-state stability of impulsive stochastic BAM neural networks with mixed delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.101
– volume: 9
  start-page: 44784
  year: 2021
  end-page: 44796
  ident: CR18
  article-title: Finite-time projective synchronization of stochastic complex-valued neural networks with probabilistic time-varying delays
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3066585
– volume: 171
  start-page: 103
  year: 2020
  end-page: 118
  ident: CR20
  article-title: Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2019.04.001
– volume: 72
  start-page: 1702
  year: 2009
  end-page: 1711
  ident: CR33
  article-title: Exponential stability of periodic solution to Cohen–Grossberg-type BAM networks with time-varying delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.07.006
– year: 2020
  ident: CR17
  article-title: New stabilization method for delayed discrete-time Cohen Grossberg BAM neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997905
– volume: 19
  start-page: 258
  year: 2014
  end-page: 273
  ident: CR7
  article-title: Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.05.024
– volume: 127
  start-page: 144
  year: 2014
  end-page: 151
  ident: CR34
  article-title: Exponential stability for stochastic Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.028
– volume: 25
  start-page: 94
  year: 2012
  end-page: 105
  ident: CR12
  article-title: Global asymptotic stability to a generalized Cohen–Grossberg BAM neural networks of neutral type delays
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.07.006
– volume: 102
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR19
  article-title: Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.02.003
– volume: 42
  start-page: 1829
  year: 2009
  end-page: 1837
  ident: CR30
  article-title: Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2009.03.090
– volume: 376
  start-page: 191
  year: 2020
  end-page: 201
  ident: CR4
  article-title: Further results on mean-square exponential input-to-state stability of time-varying delayed BAM neural networks with Markovian switching
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.033
– volume: 215
  start-page: 3970
  year: 2010
  end-page: 3984
  ident: CR11
  article-title: Stability in impulsive Cohen–Grossberg type BAM neural networks with distributed delays
  publication-title: Appl Math Comput
– volume: 47
  start-page: 410
  year: 2002
  end-page: 422
  ident: CR23
  article-title: A Lyapunov approach to incremental stability properties
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.989067
– volume: 73
  start-page: 525
  year: 2009
  end-page: 530
  ident: CR31
  article-title: Exponential stability of Cohen–Grossberg-type BAM neural networks with time-varying delays via impulsive control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.04.022
– volume: 98
  start-page: 122
  year: 2018
  end-page: 153
  ident: CR14
  article-title: Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen–Grossberg BAM neural networks with impulses
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.11.001
– volume: 72
  start-page: 1621
  year: 2009
  end-page: 1630
  ident: CR29
  article-title: Stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural networks with impulses on time scales
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.08.010
– volume: 5
  start-page: 52
  year: 2011
  end-page: 77
  ident: CR2
  article-title: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays
  publication-title: Nonlinear Anal Hybrid Syst
  doi: 10.1016/j.nahs.2010.08.005
– volume: 379
  start-page: 227
  year: 2020
  end-page: 235
  ident: CR6
  article-title: Global exponential stability analysis of discrete-time BAM neural networks with delays: a mathematical induction approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.089
– volume: 243
  start-page: 624
  year: 2014
  end-page: 636
  ident: CR9
  article-title: Global asymptotic stability of Markovian jumping stochastic Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays
  publication-title: Appl Math Comput
– volume: 98
  start-page: 203
  year: 2018
  end-page: 211
  ident: CR16
  article-title: Fixed-time stabilization of impulsive Cohen–Grossberg BAM neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.11.017
– volume: 275
  start-page: 2041
  year: 2018
  ident: 10649_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.038
– volume: 215
  start-page: 3970
  year: 2010
  ident: 10649_CR11
  publication-title: Appl Math Comput
– volume: 48
  start-page: 4089
  year: 2010
  ident: 10649_CR25
  publication-title: SIAM J Control Optim
  doi: 10.1137/090746483
– volume: 215
  start-page: 292
  year: 2009
  ident: 10649_CR32
  publication-title: Appl Math Comput
– volume: 379
  start-page: 227
  year: 2020
  ident: 10649_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.089
– volume: 72
  start-page: 1621
  year: 2009
  ident: 10649_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.08.010
– volume: 114
  start-page: 364
  year: 2018
  ident: 10649_CR36
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.021
– volume: 5
  start-page: 52
  year: 2011
  ident: 10649_CR2
  publication-title: Nonlinear Anal Hybrid Syst
  doi: 10.1016/j.nahs.2010.08.005
– volume: 47
  start-page: 410
  year: 2002
  ident: 10649_CR23
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.989067
– volume: 171
  start-page: 103
  year: 2020
  ident: 10649_CR20
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2019.04.001
– volume: 72
  start-page: 1702
  year: 2009
  ident: 10649_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.07.006
– volume: 102
  start-page: 1
  year: 2018
  ident: 10649_CR19
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.02.003
– volume: 37
  start-page: 1175
  year: 2001
  ident: 10649_CR24
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00071-1
– volume: 227
  start-page: 37
  year: 2017
  ident: 10649_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.101
– volume: 383
  start-page: 1143
  year: 2019
  ident: 10649_CR3
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2019.01.015
– volume: 33
  start-page: 944
  year: 2020
  ident: 10649_CR13
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-020-8048-9
– volume: 235
  start-page: 3385
  year: 2011
  ident: 10649_CR10
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2010.10.035
– volume: 18
  start-page: 49
  year: 1988
  ident: 10649_CR1
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.87054
– volume: 98
  start-page: 203
  year: 2018
  ident: 10649_CR16
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.11.017
– volume: 82
  start-page: 1325
  year: 2015
  ident: 10649_CR21
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2241-8
– volume: 42
  start-page: 1829
  year: 2009
  ident: 10649_CR30
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2009.03.090
– volume: 127
  start-page: 144
  year: 2014
  ident: 10649_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.028
– volume: 35
  start-page: 1285
  year: 1999
  ident: 10649_CR22
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00037-0
– volume: 73
  start-page: 525
  year: 2009
  ident: 10649_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.04.022
– volume: 243
  start-page: 624
  year: 2014
  ident: 10649_CR9
  publication-title: Appl Math Comput
– volume: 376
  start-page: 191
  year: 2020
  ident: 10649_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.033
– volume: 17
  start-page: 1
  year: 2019
  ident: 10649_CR5
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-017-0703-0
– volume: 136
  start-page: 136
  year: 2014
  ident: 10649_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.018
– volume: 19
  start-page: 258
  year: 2014
  ident: 10649_CR7
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.05.024
– volume: 125
  start-page: 330
  year: 2020
  ident: 10649_CR27
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.02.020
– volume: 98
  start-page: 122
  year: 2018
  ident: 10649_CR14
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.11.001
– volume: 9
  start-page: 44784
  year: 2021
  ident: 10649_CR18
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3066585
– volume: 25
  start-page: 94
  year: 2012
  ident: 10649_CR12
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.07.006
– volume: 46
  start-page: 991
  year: 2017
  ident: 10649_CR28
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9622-6
– volume: 275
  start-page: 2588
  year: 2018
  ident: 10649_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.028
– volume-title: Robust nonlinear control design: state-space and Lyapunov techniques
  year: 2008
  ident: 10649_CR26
– volume: 4
  start-page: 600
  year: 2010
  ident: 10649_CR35
  publication-title: Nonlinear Anal Hybrid Syst
  doi: 10.1016/j.nahs.2010.03.007
– year: 2020
  ident: 10649_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997905
SSID ssj0010020
Score 2.5513184
Snippet In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms Artificial Intelligence
Associative memory
Complex Systems
Computational Intelligence
Computer Science
Delay
Inequality
Neural networks
Probability theory
Stability analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELbocumlLbRVt1DkAzdqdeM4TnKqoLD8SKxWCNDeIsd21MMqoZusEDdOfQHekCfpjONsRCX2EimK7UT57PE3nj9C9lNplOI6YjotciaKULAcdGwWFwB4kIdJ5Ko3XE7k2Y24mEUzf-BWe7fKTiY6QW0qjWfkP3gaYEmIQMqfd38YVo1C66ovofGGbIIITqIB2Tw6mUyvVnYEZENO5YpHTEge-LCZNngOtCG0YaJLlxQpu3-5NfV88z8Tqdt5xh_IO08Z6WGL8RbZsOU2ed-VY6B-dX4kf8fLBdI5emXr5bypaVXS8xIasaZijlRSuDpn2AdaFXBT6d8K8zRTF6Tx_Ph0ih-GHl_06PCSYuIOePGk9RSvKZ7Z0ukCJAAO4jpiBAm7VQsMlqLHdq4e6k_kZnxy_euM-TILTMP6a1gsU4n7ushTbgvOAx1ZoRMreWy0SQRXWgltRiYPQblQ1uTA-VShU6XS2I5M-JkMyqq0Xwg1IgecdFxwHcJGlySBVBEmjAfWp7k1QxJ0fzjTPgc5lsKYZ332ZEQlA1Qyh0p2PyQHqz53bQaOta13O-AyvxrrrJ87Q_K9A7N__PpoX9ePtkPecoyGcE7cu2TQLJb2G3CUJt_zE_Efr3Tk7w
  priority: 102
  providerName: ProQuest
Title Further Results on Input-to-State Stability of Stochastic Cohen–Grossberg BAM Neural Networks with Probabilistic Time-Varying Delays
URI https://link.springer.com/article/10.1007/s11063-021-10649-w
https://www.proquest.com/docview/2918344166
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEB4VuPRCf2hFCo320FtZKV6v1_YxtEloKyKESEVP1np3LQ6RjWJHETdOvABv2CfpzMYmomqRuNiyvDu78ng833j-AD6lymotTMRNWuRcFqHkOdrYPC6Q4UEeJpHv3nA6VScz-f0yumyTwuou2r1zSfov9SbZDa0X8jlSCJaSKV9twU6EdCmQbyaGD74DQkDezIoHXCoRtKky_6bxWB1tMOZfblGvbcavYbeFiWy45usbeOHKt_Cqa8HAWoncg7vxckEQjp27ejlvalaV7FuJg3hTcQ8kGR59AOwNqwq8qMyVptrMzCdm_L69n9DGKMqLHQ9PGRXrwIWn6-jwmtF_Wna2QKknIn4iZY3wn3pBCVLsq5vrm_odzMajiy8nvG2twA3KXMNjlSrS5TJPhSuECEzkpEmcErE1NpFCGy2NHdg8RINCO5sjztOFSbVOYzew4XvYLqvS7QOzMhdpYOJCmBCVW5IESkdUJB6RnhHO9iDonnBm2rrj1P5inm0qJhNXMuRK5rmSrXrw-WHO9brqxpOjDzvGZa0E1hnuiVqIBEr14Khj5ub2_6l9eN7wA3gpKCPCB3IfwnazWLqPiFOavA9byXjSh53h5NePEZ6PR9Oz875_Wf8Awprk_A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKe4ALlD-xpYAPcAKLjeM48QFVLe2yS7urqmpRb8GxHXFYJe0mq9XeOPECvEcfiifpjJN0BRK99RIpij2JMuPxN54_Qt4qabXmJmJG5RkTeShYBjY2i3NgeJCFSeS7N4wncngmvp5H52vkqsuFwbDKTid6RW1Lg2fkH7kKsCVEIOXOxSXDrlHoXe1aaDRiceiWCzDZqk-jfeDvO84HB6efh6ztKsAMiFvNYqkkbmMiU9zlnAcmcsIkTvLYGpsIro0WxvZtFgKW1s5mAHF0bpTWKnZ9GwLde2QDYIaCVbSxdzA5PrnxWyD68iZe3GdC8qBN02mS9cD6Qp8phpBJodji761whW__ccn6nW6wSR62EJXuNjL1mKy54gl51LV_oK02eEp-DeYzhI_0xFXzaV3RsqCjAgaxumQexFK4-uDbJS1zuCnND411oalPCvnz8_cX_DCMMKN7u2OKhULgxZMmMr2ieEZMj2egcZCIn4gZK-ybnmFyFt13U72snpGzO2HAc7JelIV7QagVGciFiXNuQthYkySQOsIC9YAyDXe2R4LuD6emrXmOrTem6apaM3IlBa6knivpokfe38y5aCp-3Dp6u2Nc2q7-Kl3Jao986Ji5evx_alu3U3tD7g9Px0fp0Why-JI84JiJ4QPIt8l6PZu7V4CP6ux1K5SUfL_rdXANOO0jOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD7BJTG-yEUNqwjzwJsObKfTafu4CgsIbIgRg0_N3BoTNy3ZdkPwySf_gP_QX-KcacsCQRPDS5OmM9O5dr7TOd93ALZSYaRkOqI6zRXlecipcjY2jXM34IEKk8hHbzgZi4Mz_uE8Or_B4vfe7t2RZMNpQJWmot65MPnOnPjmLBk8f0R3LMFTevkIFjmKs_dgcbj_5Wjv-iQB8ZA3uuIB5YIFLXHm_lJub05zxHnnkNTvPaMlkF2tG5eTb9uzWm3r73cEHR_SrGV42gJTMmxm0gos2GIVlrqgD6T9BjyDn6PZFEEj-Wir2aSuSFmQw8IlonVJPXQl7updbq9ImbubUn-VqAZNPBXk949f-9h49Csj74YnBOVB3IvHjT96RfDPMDmduu8MFuIzIk-FfpZTpGSRXTuRV9VzOBvtfXp_QNtgDlS7VV7TWKQC0QNXKbM5Y4GOLNeJFSw22iScSS25NgOjQmfCSGuUQ5Yy16mUaWwHJnwBvaIs7BoQwxVLAx3nTIduO02SQMgIZekdttTMmj4E3ShmulU6x4Abk2yu0YwdnbmOznxHZ5d9eHOd56LR-fhn6vVucmTtmq8yVycMWhII0Ye33VjPH_-9tJf_l3wTHp_ujrLjw_HRK3jCkI7hvcjXoVdPZ_a1A0m12mjXwR8quAn_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+Results+on+Input-to-State+Stability+of+Stochastic+Cohen%E2%80%93Grossberg+BAM+Neural+Networks+with+Probabilistic+Time-Varying+Delays&rft.jtitle=Neural+processing+letters&rft.au=Chandrasekar%2C+A.&rft.au=Radhika%2C+T.&rft.au=Zhu%2C+Quanxin&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=54&rft.issue=1&rft.spage=613&rft.epage=635&rft_id=info:doi/10.1007%2Fs11063-021-10649-w&rft.externalDocID=10_1007_s11063_021_10649_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon