Further Results on Input-to-State Stability of Stochastic Cohen–Grossberg BAM Neural Networks with Probabilistic Time-Varying Delays
In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-va...
Saved in:
Published in | Neural processing letters Vol. 54; no. 1; pp. 613 - 635 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1370-4621 1573-773X |
DOI | 10.1007/s11063-021-10649-w |
Cover
Loading…
Abstract | In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-varying delay and it is transformed into one with deterministic time-varying delay in the stochastic manner. Further, by constructing a novel Lyapunov–Krasovskii functional and utilizing Ito’s and Dynkin’s formula with stochastic analysis theory, the sufficient criterion is derived for the input-to-state stability of stochastic CGBAM neural networks. Finally, numerical examples are provided to examine the merits of the given method. |
---|---|
AbstractList | In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-varying delay and it is transformed into one with deterministic time-varying delay in the stochastic manner. Further, by constructing a novel Lyapunov–Krasovskii functional and utilizing Ito’s and Dynkin’s formula with stochastic analysis theory, the sufficient criterion is derived for the input-to-state stability of stochastic CGBAM neural networks. Finally, numerical examples are provided to examine the merits of the given method. |
Author | Radhika, T. Chandrasekar, A. Zhu, Quanxin |
Author_xml | – sequence: 1 givenname: A. surname: Chandrasekar fullname: Chandrasekar, A. organization: Department of Mathematics, Sona College of Arts and Science – sequence: 2 givenname: T. surname: Radhika fullname: Radhika, T. email: radhigru@gmail.com organization: Department of Mathematics, Muthayammal Engineering College, School of Electronic Information and Electrical Engineering, Chengdu University – sequence: 3 givenname: Quanxin surname: Zhu fullname: Zhu, Quanxin organization: MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University |
BookMark | eNp9kMtOGzEUQK0KpELoD3RlqWuDH5PxzBLCo5EoIEqr7iyP505imNjB9ijKrqv-QP-QL6lJKiGxyMb3WrrnPs4h2nPeAUKfGT1mlMqTyBgtBaGckZwUNVl9QAdsLAWRUvzay7mQlBQlZx_RYYyPlGaM0wP053IIaQ4B30Mc-hSxd3jqlkMiyZPvSSfA-W1sb9Ma-y5_vJnrmKzBEz8H9_L771XwMTYQZvjs9Bu-gSHoPoe08uEp4pVNc3wXfLNpsgEf7ALITx3W1s3wOfR6HY_Qfqf7CJ_-xxH6cXnxMPlKrm-vppPTa2IEqxORZV3yIh_Y1Bw6zpkZQ2EqKLlsTVsVXBtdmJa2jZDjSkPb1ILrztRa1xJoK0boy7bvMvjnAWJSj34ILo9UvGaVKApWlrmKb6vM62kBOrUMdpEXVoyqV99q61tl32rjW60yVL2DjM3-rHcpaNvvRsUWjXmOm0F422oH9Q90s5sX |
CitedBy_id | crossref_primary_10_1007_s10489_024_06002_y crossref_primary_10_1007_s11571_023_10010_y crossref_primary_10_1016_j_chaos_2023_113658 crossref_primary_10_1016_j_neunet_2023_08_046 crossref_primary_10_1002_asjc_3059 crossref_primary_10_1007_s00034_024_02971_0 crossref_primary_10_1016_j_cnsns_2023_107535 crossref_primary_10_1007_s11071_024_09404_2 crossref_primary_10_1016_j_heliyon_2023_e22533 crossref_primary_10_1007_s00034_024_02952_3 crossref_primary_10_1007_s42979_024_03285_3 crossref_primary_10_1016_j_camwa_2023_04_011 crossref_primary_10_1016_j_asoc_2023_111131 crossref_primary_10_1007_s40314_023_02447_y crossref_primary_10_1016_j_engappai_2025_110004 crossref_primary_10_1016_j_neucom_2024_128945 crossref_primary_10_1016_j_engappai_2025_110484 crossref_primary_10_1016_j_engappai_2024_109487 crossref_primary_10_1016_j_neucom_2024_128940 crossref_primary_10_1016_j_neunet_2024_106893 crossref_primary_10_1080_02286203_2024_2437830 crossref_primary_10_1016_j_ins_2024_121777 crossref_primary_10_1016_j_heliyon_2024_e38524 crossref_primary_10_1016_j_neunet_2024_106511 crossref_primary_10_1007_s10489_025_06228_4 crossref_primary_10_1007_s11071_023_09264_2 crossref_primary_10_1016_j_knosys_2024_112728 crossref_primary_10_1007_s11063_024_11494_3 crossref_primary_10_1007_s11571_023_10002_y crossref_primary_10_1016_j_neunet_2023_11_015 crossref_primary_10_1016_j_engappai_2024_109845 crossref_primary_10_1016_j_ijar_2025_109422 crossref_primary_10_3233_JIFS_230821 crossref_primary_10_1007_s42979_024_03253_x crossref_primary_10_1007_s42979_024_03020_y crossref_primary_10_3390_axioms12090820 crossref_primary_10_1016_j_nls_2024_100004 crossref_primary_10_1007_s43069_024_00409_6 crossref_primary_10_1016_j_neunet_2025_107319 crossref_primary_10_1007_s12555_022_0598_2 crossref_primary_10_1016_j_knosys_2024_112591 crossref_primary_10_1007_s11063_024_11509_z crossref_primary_10_1016_j_aej_2023_12_029 crossref_primary_10_1016_j_engappai_2024_109993 crossref_primary_10_1016_j_neucom_2025_129444 crossref_primary_10_1007_s10489_024_06084_8 crossref_primary_10_1007_s11571_024_10096_y crossref_primary_10_1016_j_neunet_2024_106149 |
Cites_doi | 10.1007/s11424-020-8048-9 10.1016/j.neucom.2017.11.028 10.1016/j.nahs.2010.03.007 10.1016/j.cam.2010.10.035 10.1016/j.neucom.2017.10.038 10.1016/S0005-1098(01)00071-1 10.1007/s12555-017-0703-0 10.1007/s11071-015-2241-8 10.1016/j.chaos.2018.07.021 10.1016/j.neucom.2014.01.018 10.1016/j.physleta.2019.01.015 10.1109/21.87054 10.1016/S0005-1098(99)00037-0 10.1137/090746483 10.1016/j.neunet.2020.02.020 10.1007/s11063-017-9622-6 10.1016/j.neucom.2016.08.101 10.1109/ACCESS.2021.3066585 10.1016/j.matcom.2019.04.001 10.1016/j.neucom.2008.07.006 10.1109/ACCESS.2020.2997905 10.1016/j.cnsns.2013.05.024 10.1016/j.neucom.2013.08.028 10.1016/j.neunet.2011.07.006 10.1016/j.neunet.2018.02.003 10.1016/j.chaos.2009.03.090 10.1016/j.neucom.2019.09.033 10.1109/9.989067 10.1016/j.neucom.2009.04.022 10.1016/j.neunet.2017.11.001 10.1016/j.neucom.2008.08.010 10.1016/j.nahs.2010.08.005 10.1016/j.neucom.2019.10.089 10.1016/j.neunet.2017.11.017 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Copyright Springer Nature B.V. Feb 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Copyright Springer Nature B.V. Feb 2022 |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ |
DOI | 10.1007/s11063-021-10649-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-773X |
EndPage | 635 |
ExternalDocumentID | 10_1007_s11063_021_10649_w |
GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-769624064b92ef221c5e4c8e627dcd842aca4cd0db3758aedb932afc9aa97e0d3 |
IEDL.DBID | U2A |
ISSN | 1370-4621 |
IngestDate | Wed Aug 13 09:03:08 EDT 2025 Tue Jul 01 01:09:35 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Fri Feb 21 02:47:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cohen–Grossberg BAM neural networks Stochastic systems Input-to-state stability Probabilistic time-varying delay |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-769624064b92ef221c5e4c8e627dcd842aca4cd0db3758aedb932afc9aa97e0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918344166 |
PQPubID | 2043838 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2918344166 crossref_primary_10_1007_s11063_021_10649_w crossref_citationtrail_10_1007_s11063_021_10649_w springer_journals_10_1007_s11063_021_10649_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Neural processing letters |
PublicationTitleAbbrev | Neural Process Lett |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Xu, Bao (CR4) 2020; 376 Cong, Han, Zhang (CR6) 2020; 379 Zhao, Kurthsb, Duan (CR3) 2019; 383 Faydasicok (CR27) 2020; 125 Li, Chen, Zhao (CR29) 2009; 72 Du, Zhong, Zhou (CR9) 2014; 243 Wen, Sun (CR30) 2009; 42 Li, Li, Huang, Zhang (CR16) 2018; 98 Zhao, Kurths, Duan (CR36) 2018; 114 Guo, Luo, Wang, Luo, Ge, Kurths, Yuan, Gao (CR5) 2019; 17 Yang, Yu, Cao, Alsaadi, Hayat (CR14) 2018; 98 Sriraman, Cao, Samidurai (CR20) 2020; 171 Maharajan, Raja, Cao, Rajchakit, Alsaedi (CR15) 2018; 275 Xiang, Cao (CR33) 2009; 72 Zhang, Liu, Zhou (CR12) 2012; 25 Li (CR32) 2009; 215 Li, Fu (CR10) 2011; 235 Kosko (CR1) 1988; 18 Nagamani, Radhika (CR21) 2015; 82 Li, Zhou, Yang (CR37) 2017; 227 Rakkiyappan, Balasubramaniam (CR35) 2010; 4 Hui, Zhang, Zhang, Iu, Yao, Bai (CR18) 2021; 9 Chaouki, Farah (CR13) 2020; 33 Li, Zhang, Zhang, Li (CR11) 2010; 215 Dashkovskiy, Ruffer, Wirth (CR25) 2010; 48 Du, Zhong, Zhou, Shi, Cheng (CR34) 2014; 127 Zhu, Rakkiyappan, Chandrasekar (CR8) 2014; 136 Ali, Saravanan, Esther Rani, Elakkia, Cao, Alsaedi, Hayat (CR28) 2017; 46 Cong, Han, Zhang (CR17) 2020 Arslan, Basar (CR24) 2001; 37 Angeli (CR22) 1999; 35 Liu, Wang, Shen, Huang, Alsaadi (CR19) 2018; 102 Guo, Zhang, Liu, Lin, Wang, Chen (CR38) 2018; 275 Li (CR31) 2009; 73 Freeman, Kokotovic (CR26) 2008 Zhu, Huang, Yang (CR2) 2011; 5 Rao, Zhong, Wang (CR7) 2014; 19 Angeli (CR23) 2002; 47 Q Zhu (10649_CR8) 2014; 136 M Hui (10649_CR18) 2021; 9 Q Zhu (10649_CR2) 2011; 5 X Li (10649_CR10) 2011; 235 R Guo (10649_CR38) 2018; 275 Y Zhao (10649_CR3) 2019; 383 C Maharajan (10649_CR15) 2018; 275 S Dashkovskiy (10649_CR25) 2010; 48 Y Cong (10649_CR6) 2020; 379 D Angeli (10649_CR23) 2002; 47 A Chaouki (10649_CR13) 2020; 33 O Faydasicok (10649_CR27) 2020; 125 J Li (10649_CR37) 2017; 227 X Li (10649_CR31) 2009; 73 H Liu (10649_CR19) 2018; 102 X Li (10649_CR32) 2009; 215 G Nagamani (10649_CR21) 2015; 82 Y Zhao (10649_CR36) 2018; 114 RA Freeman (10649_CR26) 2008 R Rao (10649_CR7) 2014; 19 Y Du (10649_CR9) 2014; 243 B Kosko (10649_CR1) 1988; 18 H Xiang (10649_CR33) 2009; 72 G Xu (10649_CR4) 2020; 376 Y Guo (10649_CR5) 2019; 17 H Li (10649_CR16) 2018; 98 MS Ali (10649_CR28) 2017; 46 G Arslan (10649_CR24) 2001; 37 Y Cong (10649_CR17) 2020 K Li (10649_CR11) 2010; 215 R Sriraman (10649_CR20) 2020; 171 D Angeli (10649_CR22) 1999; 35 Y Du (10649_CR34) 2014; 127 Z Wen (10649_CR30) 2009; 42 R Rakkiyappan (10649_CR35) 2010; 4 Z Zhang (10649_CR12) 2012; 25 W Yang (10649_CR14) 2018; 98 Y Li (10649_CR29) 2009; 72 |
References_xml | – volume: 33 start-page: 944 year: 2020 end-page: 967 ident: CR13 article-title: New results on interval general Cohen–Grossberg BAM neural networks publication-title: J Syst Sci Complex doi: 10.1007/s11424-020-8048-9 – volume: 215 start-page: 292 year: 2009 end-page: 307 ident: CR32 article-title: Existence and global exponential stability of periodic solution for impulsive Cohen–Grossberg-type BAM neural networks with continuously distributed delays publication-title: Appl Math Comput – volume: 275 start-page: 2588 year: 2018 end-page: 2602 ident: CR15 article-title: Impulsive Cohen–Grossberg BAM neural networks with mixed time-delays: an exponential stability analysis issue publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.028 – volume: 4 start-page: 600 year: 2010 end-page: 607 ident: CR35 article-title: Delay-probability-distribution-dependent stability of uncertain stochastic genetic regulatory networks with mixed time-varying delays: an LMI approach publication-title: Nonlinear Anal Hybrid Syst doi: 10.1016/j.nahs.2010.03.007 – volume: 235 start-page: 3385 year: 2011 end-page: 3394 ident: CR10 article-title: Global asymptotic stability of stochastic Cohen–Grossberg type BAM neural networks with mixed delays: an LMI approach publication-title: J Comput Appl Math doi: 10.1016/j.cam.2010.10.035 – volume: 275 start-page: 2041 year: 2018 end-page: 2054 ident: CR38 article-title: Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.038 – year: 2008 ident: CR26 publication-title: Robust nonlinear control design: state-space and Lyapunov techniques – volume: 37 start-page: 1175 year: 2001 end-page: 1188 ident: CR24 article-title: Disturbance attenuating controller design for strict-feedback systems with structurally unknown dynamics publication-title: Automatica doi: 10.1016/S0005-1098(01)00071-1 – volume: 17 start-page: 1 year: 2019 end-page: 15 ident: CR5 article-title: Fixed-time synchronization of complex-valued memristive BAM neural network and applications in image encryption and decryption publication-title: Int J Control Autom Syst doi: 10.1007/s12555-017-0703-0 – volume: 82 start-page: 1325 year: 2015 end-page: 1341 ident: CR21 article-title: Dissipativity and passivity analysis of T-S fuzzy neural networks with probabilistic time-varying delays: a quadratic convex combination approach publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2241-8 – volume: 114 start-page: 364 year: 2018 end-page: 369 ident: CR36 article-title: Input-to-state stability analysis for memristive Cohen–Grossberg-type neural networks with variable time delays publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.021 – volume: 136 start-page: 136 year: 2014 end-page: 151 ident: CR8 article-title: Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.018 – volume: 383 start-page: 1143 year: 2019 end-page: 1150 ident: CR3 article-title: Input-to-state stability analysis for Memristive BAM neural networks with variable time delays publication-title: Phys Lett A doi: 10.1016/j.physleta.2019.01.015 – volume: 18 start-page: 49 year: 1988 end-page: 60 ident: CR1 article-title: Bi-directional associative memories publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.87054 – volume: 35 start-page: 1285 year: 1999 end-page: 1290 ident: CR22 article-title: Input-to-state stability of PD-controlled robotic systems publication-title: Automatica doi: 10.1016/S0005-1098(99)00037-0 – volume: 48 start-page: 4089 year: 2010 end-page: 4118 ident: CR25 article-title: Small gain theorems for large scale systems and construction of ISS Lyapunov functions publication-title: SIAM J Control Optim doi: 10.1137/090746483 – volume: 125 start-page: 330 year: 2020 end-page: 337 ident: CR27 article-title: New criteria for global stability of neutral-type Cohen–Grossberg neural networks with multiple delays publication-title: Neural Netw doi: 10.1016/j.neunet.2020.02.020 – volume: 46 start-page: 991 year: 2017 end-page: 1007 ident: CR28 article-title: Asymptotic stability of Cohen–Grossberg BAM neutral type neural networks with distributed time varying delays publication-title: Neural Process Lett doi: 10.1007/s11063-017-9622-6 – volume: 227 start-page: 37 year: 2017 end-page: 45 ident: CR37 article-title: State estimation and input-to-state stability of impulsive stochastic BAM neural networks with mixed delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.101 – volume: 9 start-page: 44784 year: 2021 end-page: 44796 ident: CR18 article-title: Finite-time projective synchronization of stochastic complex-valued neural networks with probabilistic time-varying delays publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3066585 – volume: 171 start-page: 103 year: 2020 end-page: 118 ident: CR20 article-title: Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays publication-title: Math Comput Simul doi: 10.1016/j.matcom.2019.04.001 – volume: 72 start-page: 1702 year: 2009 end-page: 1711 ident: CR33 article-title: Exponential stability of periodic solution to Cohen–Grossberg-type BAM networks with time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.07.006 – year: 2020 ident: CR17 article-title: New stabilization method for delayed discrete-time Cohen Grossberg BAM neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997905 – volume: 19 start-page: 258 year: 2014 end-page: 273 ident: CR7 article-title: Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2013.05.024 – volume: 127 start-page: 144 year: 2014 end-page: 151 ident: CR34 article-title: Exponential stability for stochastic Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.028 – volume: 25 start-page: 94 year: 2012 end-page: 105 ident: CR12 article-title: Global asymptotic stability to a generalized Cohen–Grossberg BAM neural networks of neutral type delays publication-title: Neural Netw doi: 10.1016/j.neunet.2011.07.006 – volume: 102 start-page: 1 year: 2018 end-page: 9 ident: CR19 article-title: Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays publication-title: Neural Netw doi: 10.1016/j.neunet.2018.02.003 – volume: 42 start-page: 1829 year: 2009 end-page: 1837 ident: CR30 article-title: Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2009.03.090 – volume: 376 start-page: 191 year: 2020 end-page: 201 ident: CR4 article-title: Further results on mean-square exponential input-to-state stability of time-varying delayed BAM neural networks with Markovian switching publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.033 – volume: 215 start-page: 3970 year: 2010 end-page: 3984 ident: CR11 article-title: Stability in impulsive Cohen–Grossberg type BAM neural networks with distributed delays publication-title: Appl Math Comput – volume: 47 start-page: 410 year: 2002 end-page: 422 ident: CR23 article-title: A Lyapunov approach to incremental stability properties publication-title: IEEE Trans Autom Control doi: 10.1109/9.989067 – volume: 73 start-page: 525 year: 2009 end-page: 530 ident: CR31 article-title: Exponential stability of Cohen–Grossberg-type BAM neural networks with time-varying delays via impulsive control publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.04.022 – volume: 98 start-page: 122 year: 2018 end-page: 153 ident: CR14 article-title: Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen–Grossberg BAM neural networks with impulses publication-title: Neural Netw doi: 10.1016/j.neunet.2017.11.001 – volume: 72 start-page: 1621 year: 2009 end-page: 1630 ident: CR29 article-title: Stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural networks with impulses on time scales publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.08.010 – volume: 5 start-page: 52 year: 2011 end-page: 77 ident: CR2 article-title: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays publication-title: Nonlinear Anal Hybrid Syst doi: 10.1016/j.nahs.2010.08.005 – volume: 379 start-page: 227 year: 2020 end-page: 235 ident: CR6 article-title: Global exponential stability analysis of discrete-time BAM neural networks with delays: a mathematical induction approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.089 – volume: 243 start-page: 624 year: 2014 end-page: 636 ident: CR9 article-title: Global asymptotic stability of Markovian jumping stochastic Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays publication-title: Appl Math Comput – volume: 98 start-page: 203 year: 2018 end-page: 211 ident: CR16 article-title: Fixed-time stabilization of impulsive Cohen–Grossberg BAM neural networks publication-title: Neural Netw doi: 10.1016/j.neunet.2017.11.017 – volume: 275 start-page: 2041 year: 2018 ident: 10649_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.038 – volume: 215 start-page: 3970 year: 2010 ident: 10649_CR11 publication-title: Appl Math Comput – volume: 48 start-page: 4089 year: 2010 ident: 10649_CR25 publication-title: SIAM J Control Optim doi: 10.1137/090746483 – volume: 215 start-page: 292 year: 2009 ident: 10649_CR32 publication-title: Appl Math Comput – volume: 379 start-page: 227 year: 2020 ident: 10649_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.089 – volume: 72 start-page: 1621 year: 2009 ident: 10649_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.08.010 – volume: 114 start-page: 364 year: 2018 ident: 10649_CR36 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.021 – volume: 5 start-page: 52 year: 2011 ident: 10649_CR2 publication-title: Nonlinear Anal Hybrid Syst doi: 10.1016/j.nahs.2010.08.005 – volume: 47 start-page: 410 year: 2002 ident: 10649_CR23 publication-title: IEEE Trans Autom Control doi: 10.1109/9.989067 – volume: 171 start-page: 103 year: 2020 ident: 10649_CR20 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2019.04.001 – volume: 72 start-page: 1702 year: 2009 ident: 10649_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.07.006 – volume: 102 start-page: 1 year: 2018 ident: 10649_CR19 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.02.003 – volume: 37 start-page: 1175 year: 2001 ident: 10649_CR24 publication-title: Automatica doi: 10.1016/S0005-1098(01)00071-1 – volume: 227 start-page: 37 year: 2017 ident: 10649_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.101 – volume: 383 start-page: 1143 year: 2019 ident: 10649_CR3 publication-title: Phys Lett A doi: 10.1016/j.physleta.2019.01.015 – volume: 33 start-page: 944 year: 2020 ident: 10649_CR13 publication-title: J Syst Sci Complex doi: 10.1007/s11424-020-8048-9 – volume: 235 start-page: 3385 year: 2011 ident: 10649_CR10 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2010.10.035 – volume: 18 start-page: 49 year: 1988 ident: 10649_CR1 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.87054 – volume: 98 start-page: 203 year: 2018 ident: 10649_CR16 publication-title: Neural Netw doi: 10.1016/j.neunet.2017.11.017 – volume: 82 start-page: 1325 year: 2015 ident: 10649_CR21 publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2241-8 – volume: 42 start-page: 1829 year: 2009 ident: 10649_CR30 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2009.03.090 – volume: 127 start-page: 144 year: 2014 ident: 10649_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.028 – volume: 35 start-page: 1285 year: 1999 ident: 10649_CR22 publication-title: Automatica doi: 10.1016/S0005-1098(99)00037-0 – volume: 73 start-page: 525 year: 2009 ident: 10649_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.04.022 – volume: 243 start-page: 624 year: 2014 ident: 10649_CR9 publication-title: Appl Math Comput – volume: 376 start-page: 191 year: 2020 ident: 10649_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.033 – volume: 17 start-page: 1 year: 2019 ident: 10649_CR5 publication-title: Int J Control Autom Syst doi: 10.1007/s12555-017-0703-0 – volume: 136 start-page: 136 year: 2014 ident: 10649_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.018 – volume: 19 start-page: 258 year: 2014 ident: 10649_CR7 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2013.05.024 – volume: 125 start-page: 330 year: 2020 ident: 10649_CR27 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.02.020 – volume: 98 start-page: 122 year: 2018 ident: 10649_CR14 publication-title: Neural Netw doi: 10.1016/j.neunet.2017.11.001 – volume: 9 start-page: 44784 year: 2021 ident: 10649_CR18 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3066585 – volume: 25 start-page: 94 year: 2012 ident: 10649_CR12 publication-title: Neural Netw doi: 10.1016/j.neunet.2011.07.006 – volume: 46 start-page: 991 year: 2017 ident: 10649_CR28 publication-title: Neural Process Lett doi: 10.1007/s11063-017-9622-6 – volume: 275 start-page: 2588 year: 2018 ident: 10649_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.028 – volume-title: Robust nonlinear control design: state-space and Lyapunov techniques year: 2008 ident: 10649_CR26 – volume: 4 start-page: 600 year: 2010 ident: 10649_CR35 publication-title: Nonlinear Anal Hybrid Syst doi: 10.1016/j.nahs.2010.03.007 – year: 2020 ident: 10649_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997905 |
SSID | ssj0010020 |
Score | 2.5513184 |
Snippet | In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 613 |
SubjectTerms | Artificial Intelligence Associative memory Complex Systems Computational Intelligence Computer Science Delay Inequality Neural networks Probability theory Stability analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELbocumlLbRVt1DkAzdqdeM4TnKqoLD8SKxWCNDeIsd21MMqoZusEDdOfQHekCfpjONsRCX2EimK7UT57PE3nj9C9lNplOI6YjotciaKULAcdGwWFwB4kIdJ5Ko3XE7k2Y24mEUzf-BWe7fKTiY6QW0qjWfkP3gaYEmIQMqfd38YVo1C66ovofGGbIIITqIB2Tw6mUyvVnYEZENO5YpHTEge-LCZNngOtCG0YaJLlxQpu3-5NfV88z8Tqdt5xh_IO08Z6WGL8RbZsOU2ed-VY6B-dX4kf8fLBdI5emXr5bypaVXS8xIasaZijlRSuDpn2AdaFXBT6d8K8zRTF6Tx_Ph0ih-GHl_06PCSYuIOePGk9RSvKZ7Z0ukCJAAO4jpiBAm7VQsMlqLHdq4e6k_kZnxy_euM-TILTMP6a1gsU4n7ushTbgvOAx1ZoRMreWy0SQRXWgltRiYPQblQ1uTA-VShU6XS2I5M-JkMyqq0Xwg1IgecdFxwHcJGlySBVBEmjAfWp7k1QxJ0fzjTPgc5lsKYZ332ZEQlA1Qyh0p2PyQHqz53bQaOta13O-AyvxrrrJ87Q_K9A7N__PpoX9ePtkPecoyGcE7cu2TQLJb2G3CUJt_zE_Efr3Tk7w priority: 102 providerName: ProQuest |
Title | Further Results on Input-to-State Stability of Stochastic Cohen–Grossberg BAM Neural Networks with Probabilistic Time-Varying Delays |
URI | https://link.springer.com/article/10.1007/s11063-021-10649-w https://www.proquest.com/docview/2918344166 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEB4VuPRCf2hFCo320FtZKV6v1_YxtEloKyKESEVP1np3LQ6RjWJHETdOvABv2CfpzMYmomqRuNiyvDu78ng833j-AD6lymotTMRNWuRcFqHkOdrYPC6Q4UEeJpHv3nA6VScz-f0yumyTwuou2r1zSfov9SbZDa0X8jlSCJaSKV9twU6EdCmQbyaGD74DQkDezIoHXCoRtKky_6bxWB1tMOZfblGvbcavYbeFiWy45usbeOHKt_Cqa8HAWoncg7vxckEQjp27ejlvalaV7FuJg3hTcQ8kGR59AOwNqwq8qMyVptrMzCdm_L69n9DGKMqLHQ9PGRXrwIWn6-jwmtF_Wna2QKknIn4iZY3wn3pBCVLsq5vrm_odzMajiy8nvG2twA3KXMNjlSrS5TJPhSuECEzkpEmcErE1NpFCGy2NHdg8RINCO5sjztOFSbVOYzew4XvYLqvS7QOzMhdpYOJCmBCVW5IESkdUJB6RnhHO9iDonnBm2rrj1P5inm0qJhNXMuRK5rmSrXrw-WHO9brqxpOjDzvGZa0E1hnuiVqIBEr14Khj5ub2_6l9eN7wA3gpKCPCB3IfwnazWLqPiFOavA9byXjSh53h5NePEZ6PR9Oz875_Wf8Awprk_A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKe4ALlD-xpYAPcAKLjeM48QFVLe2yS7urqmpRb8GxHXFYJe0mq9XeOPECvEcfiifpjJN0BRK99RIpij2JMuPxN54_Qt4qabXmJmJG5RkTeShYBjY2i3NgeJCFSeS7N4wncngmvp5H52vkqsuFwbDKTid6RW1Lg2fkH7kKsCVEIOXOxSXDrlHoXe1aaDRiceiWCzDZqk-jfeDvO84HB6efh6ztKsAMiFvNYqkkbmMiU9zlnAcmcsIkTvLYGpsIro0WxvZtFgKW1s5mAHF0bpTWKnZ9GwLde2QDYIaCVbSxdzA5PrnxWyD68iZe3GdC8qBN02mS9cD6Qp8phpBJodji761whW__ccn6nW6wSR62EJXuNjL1mKy54gl51LV_oK02eEp-DeYzhI_0xFXzaV3RsqCjAgaxumQexFK4-uDbJS1zuCnND411oalPCvnz8_cX_DCMMKN7u2OKhULgxZMmMr2ieEZMj2egcZCIn4gZK-ybnmFyFt13U72snpGzO2HAc7JelIV7QagVGciFiXNuQthYkySQOsIC9YAyDXe2R4LuD6emrXmOrTem6apaM3IlBa6knivpokfe38y5aCp-3Dp6u2Nc2q7-Kl3Jao986Ji5evx_alu3U3tD7g9Px0fp0Why-JI84JiJ4QPIt8l6PZu7V4CP6ux1K5SUfL_rdXANOO0jOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD7BJTG-yEUNqwjzwJsObKfTafu4CgsIbIgRg0_N3BoTNy3ZdkPwySf_gP_QX-KcacsCQRPDS5OmM9O5dr7TOd93ALZSYaRkOqI6zRXlecipcjY2jXM34IEKk8hHbzgZi4Mz_uE8Or_B4vfe7t2RZMNpQJWmot65MPnOnPjmLBk8f0R3LMFTevkIFjmKs_dgcbj_5Wjv-iQB8ZA3uuIB5YIFLXHm_lJub05zxHnnkNTvPaMlkF2tG5eTb9uzWm3r73cEHR_SrGV42gJTMmxm0gos2GIVlrqgD6T9BjyDn6PZFEEj-Wir2aSuSFmQw8IlonVJPXQl7updbq9ImbubUn-VqAZNPBXk949f-9h49Csj74YnBOVB3IvHjT96RfDPMDmduu8MFuIzIk-FfpZTpGSRXTuRV9VzOBvtfXp_QNtgDlS7VV7TWKQC0QNXKbM5Y4GOLNeJFSw22iScSS25NgOjQmfCSGuUQ5Yy16mUaWwHJnwBvaIs7BoQwxVLAx3nTIduO02SQMgIZekdttTMmj4E3ShmulU6x4Abk2yu0YwdnbmOznxHZ5d9eHOd56LR-fhn6vVucmTtmq8yVycMWhII0Ye33VjPH_-9tJf_l3wTHp_ujrLjw_HRK3jCkI7hvcjXoVdPZ_a1A0m12mjXwR8quAn_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+Results+on+Input-to-State+Stability+of+Stochastic+Cohen%E2%80%93Grossberg+BAM+Neural+Networks+with+Probabilistic+Time-Varying+Delays&rft.jtitle=Neural+processing+letters&rft.au=Chandrasekar%2C+A.&rft.au=Radhika%2C+T.&rft.au=Zhu%2C+Quanxin&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=54&rft.issue=1&rft.spage=613&rft.epage=635&rft_id=info:doi/10.1007%2Fs11063-021-10649-w&rft.externalDocID=10_1007_s11063_021_10649_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |