Further Results on Input-to-State Stability of Stochastic Cohen–Grossberg BAM Neural Networks with Probabilistic Time-Varying Delays

In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-va...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 54; no. 1; pp. 613 - 635
Main Authors Chandrasekar, A., Radhika, T., Zhu, Quanxin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the problem of stochastic Cohen–Grossberg Bidirectional Associative Memory (CGBAM) neural networks with probabilistic time-varying delay is analyzed by input-to-state stability theory. The stochastic variable with Bernoulli distribution gives the information of probabilistic time-varying delay and it is transformed into one with deterministic time-varying delay in the stochastic manner. Further, by constructing a novel Lyapunov–Krasovskii functional and utilizing Ito’s and Dynkin’s formula with stochastic analysis theory, the sufficient criterion is derived for the input-to-state stability of stochastic CGBAM neural networks. Finally, numerical examples are provided to examine the merits of the given method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-021-10649-w