An Analytical Solution for the Periodically Spaced Two Collinear and Symmetric Cracks Under Remote Tension
The present paper provides an analytical solution for a periodic array of two collinear and symmetric cracks (P-TCSC) under remote tension. This is achieved by representing the multiple collinear cracks problem as the contact problem with discrete ligament regions, and the governing equations are ob...
Saved in:
Published in | Journal of elasticity Vol. 157; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0374-3535 1573-2681 |
DOI | 10.1007/s10659-024-10093-6 |
Cover
Loading…
Summary: | The present paper provides an analytical solution for a periodic array of two collinear and symmetric cracks (P-TCSC) under remote tension. This is achieved by representing the multiple collinear cracks problem as the contact problem with discrete ligament regions, and the governing equations are obtained as integral equations with Cauchy-type kernel. Closed-form expressions are derived for the crack opening profile, normal stress distribution and mode I stress intensity factors (SIFs), which can reduce to the classical solutions of two collinear and symmetric cracks (TCSC) or a periodic row of collinear cracks with equal length and equal spacing (PCEE) under special conditions. Finite element analysis is also performed to validate the analytical solutions obtained. Different from the TCSC case, results show that crack initiation for P-TCSC seems more complicated depending on a combination of two nondimensional parameters, and a SIFs map for P-TCSC is further constructed to give a more precise evaluation. The proposed method relies solely on solving the integral equations with Cauchy-type kernel combined with the corresponding boundary conditions without a prior knowledge of the complex potential function in traditional complex variable method of plane elasticity, and it may find application in plastic zone evaluation and fracture criteria of collinear cracks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0374-3535 1573-2681 |
DOI: | 10.1007/s10659-024-10093-6 |