Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays
This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing...
Saved in:
Published in | Neural processing letters Vol. 50; no. 3; pp. 2407 - 2436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1370-4621 1573-773X |
DOI | 10.1007/s11063-019-10018-8 |
Cover
Summary: | This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1370-4621 1573-773X |
DOI: | 10.1007/s11063-019-10018-8 |