Is Zooplankton Body Size an Indicator of Water Quality in (Sub)tropical Reservoirs in China?

Large zooplankton can efficiently graze on algae and thereby improve water quality. However, zooplankton body size is considered to decrease with decreasing latitude because of the high fish predation and warm temperatures at lower latitudes. To explore how fish stocking has destabilized the trophic...

Full description

Saved in:
Bibliographic Details
Published inEcosystems (New York) Vol. 25; no. 2; pp. 308 - 319
Main Authors Wang, Li, Chen, Jun, Su, Haojie, Ma, Xufa, Wu, Zhixu, Shen, Hong, Yu, Jia, Liu, Jiarui, Wu, Yao, Ding, Guangyi, Xie, Ping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large zooplankton can efficiently graze on algae and thereby improve water quality. However, zooplankton body size is considered to decrease with decreasing latitude because of the high fish predation and warm temperatures at lower latitudes. To explore how fish stocking has destabilized the trophic cascade and influenced water quality along a latitudinal gradient of reservoirs, we compared zooplankton body size and trophic cascades to water quality indicators in the subtropical Lake Qiandaohu and in tropical Guangdong reservoirs. The results showed that the body length and total biomass of the dominant zooplankton in Lake Qiandaohu were much larger than those of zooplankton in the Guangdong reservoirs. Moreover, fish predation was the key factor influencing the changes in zooplankton body size and total biomass in Lake Qiandaohu. In the Guangdong reservoirs, water temperature and total phosphorus were the pivotal drivers of zooplankton body size and biomass, respectively. In addition, structural equation models showed that the decreasing zooplankton body size and biomass under fish pressure weakened the grazing pressure on phytoplankton and indirectly contributed to the low water clarity in Lake Qiandaohu. However, fish had little influence on the inefficient algal grazing of zooplankton in the Guangdong reservoirs. Overall, zooplankton can function as an indicator of water quality in fish-controlled subtropical reservoirs but not in nutrient-controlled tropical reservoirs.
ISSN:1432-9840
1435-0629
DOI:10.1007/s10021-021-00656-2