RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting
The spare parts demand forecasting is very much essential for the organizations to minimize the cost and prevent the stock outs. The demand of spare parts/ car sales distribution is an important factor in inventory control. The valuation of the demand is challenging as the automobile spare parts/car...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 17; pp. 26145 - 26159 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The spare parts demand forecasting is very much essential for the organizations to minimize the cost and prevent the stock outs. The demand of spare parts/ car sales distribution is an important factor in inventory control. The valuation of the demand is challenging as the automobile spare parts/car sales demand are often recurrent. The renowned empirical method adopts historical demand data to create the distribution of lead time demand. Although it works reasonably well when service requirements are relatively low, it has difficulty reaching high target service levels. In this paper, we proposed Recurrent Neural Networks/ Long-Short Term Memory
(
RNN / LSTM) with modified Adam optimizer to predict the demand for spare parts. In this LSTM, weight vectors are generated respectively. These weights are optimized using the Modified-Adam algorithm. The accuracy of the forecast and the performance of the inventory are considered in the experimental result. Experimental results confirm that RNN / LSTM with a Modified-Adam works well with minimal error compared to other existing methods. We conclude that the proposed RNN/LSTM with Modified-Adam algorithm is well suited for the prediction of automobile spare parts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-021-10913-0 |