Structural, electrical properties of bismuth and niobium-doped LaNiO3 perovskite obtained by sol–gel route for future electronic device applications
This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO 3 , synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refine...
Saved in:
Published in | Indian journal of physics Vol. 98; no. 8; pp. 2745 - 2753 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0973-1458 0974-9845 |
DOI | 10.1007/s12648-023-03039-6 |
Cover
Loading…
Abstract | This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO
3
, synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refinement of the X-ray diffraction pattern suggests that the compound has a monoclinic phase at room temperature with a
P
2
1
/
n
space group. Scanning electron microscopy surface morphology analysis of the sample showed closed packing of grains with good density and very little porosity. The frequency-dependent modulus of the material is investigated in the temperature range from 200 K to 360 K and in range frequency between 1 kHz and 1 MHz. The Cole–Cole model is used to analyze the dielectric relaxation phenomenon. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element, where the ideal capacitance part is replaced by a constant phase element. The frequency-dependent conductivity spectra follow the Jonscher power law. Nevertheless, the Arrhenius-type conduction mechanism was found to be active in the sample with activation energy of 0.168 eV. The electrical property of the sample was found to be independent of temperatures, making it a potential candidate for thermally stable capacitor application. |
---|---|
AbstractList | This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO3, synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refinement of the X-ray diffraction pattern suggests that the compound has a monoclinic phase at room temperature with a P21/n space group. Scanning electron microscopy surface morphology analysis of the sample showed closed packing of grains with good density and very little porosity. The frequency-dependent modulus of the material is investigated in the temperature range from 200 K to 360 K and in range frequency between 1 kHz and 1 MHz. The Cole–Cole model is used to analyze the dielectric relaxation phenomenon. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element, where the ideal capacitance part is replaced by a constant phase element. The frequency-dependent conductivity spectra follow the Jonscher power law. Nevertheless, the Arrhenius-type conduction mechanism was found to be active in the sample with activation energy of 0.168 eV. The electrical property of the sample was found to be independent of temperatures, making it a potential candidate for thermally stable capacitor application. This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO 3 , synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refinement of the X-ray diffraction pattern suggests that the compound has a monoclinic phase at room temperature with a P 2 1 / n space group. Scanning electron microscopy surface morphology analysis of the sample showed closed packing of grains with good density and very little porosity. The frequency-dependent modulus of the material is investigated in the temperature range from 200 K to 360 K and in range frequency between 1 kHz and 1 MHz. The Cole–Cole model is used to analyze the dielectric relaxation phenomenon. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element, where the ideal capacitance part is replaced by a constant phase element. The frequency-dependent conductivity spectra follow the Jonscher power law. Nevertheless, the Arrhenius-type conduction mechanism was found to be active in the sample with activation energy of 0.168 eV. The electrical property of the sample was found to be independent of temperatures, making it a potential candidate for thermally stable capacitor application. |
Author | Teixeira, S. Soreto Benamara, M. Graça, M. P. F. Nassar, Kais Iben Kechiche, L. |
Author_xml | – sequence: 1 givenname: Kais Iben orcidid: 0000-0002-1917-4399 surname: Nassar fullname: Nassar, Kais Iben email: kaisibnnassar12@gmail.com organization: I3N-Aveiro, Department of Physics, University of Aveiro – sequence: 2 givenname: M. surname: Benamara fullname: Benamara, M. organization: Laboratory of Physics of Materials and Nanomaterials Applied to the Environment, Faculty of Sciences of Gabes, University of Gabes – sequence: 3 givenname: L. surname: Kechiche fullname: Kechiche, L. organization: Department of Chemistry, College of Science, King Khalid University – sequence: 4 givenname: S. Soreto surname: Teixeira fullname: Teixeira, S. Soreto organization: I3N-Aveiro, Department of Physics, University of Aveiro – sequence: 5 givenname: M. P. F. surname: Graça fullname: Graça, M. P. F. organization: I3N-Aveiro, Department of Physics, University of Aveiro |
BookMark | eNp9kcFuFSEUholpE9tbX8AViVtpYZgBZmkabU1u7EJdEwYOlToXRmCadNd3MPEBfRLx3iYmLroCcv6P_5zzn6KjmCIg9JrRc0apvCisE70itOOEcspHIl6gEzrKnoyqH472d05YP6iX6LSUO0rFyORwgn59rnm1dc1mfothBltzsGbGS04L5Bqg4OTxFMpurd-wiQ7HkKaw7ohrAoe35lO44bhp0335HirgNFUTYitND7ik-ffjz1uYcU5rq_mUsV-bGzx5pRgsdnAfLGCzLHPzriHFcoaOvZkLvHo6N-jrh_dfLq_J9ubq4-W7LbGcjZVIapWV3sLopHPUOMr9ACPr20soMU6skxPjzEkwYuoU7YWj3lDLemDeMb5Bbw7_tnl_rFCqvktrjs1ScyrUoGTXFrdB6qCyOZWSwWsb6r7Rmk2YNaP6bwr6kIJuKeh9Clo0tPsPXXLYmfzwPMQPUGnieAv5X1fPUH8AJsmhMQ |
CitedBy_id | crossref_primary_10_3390_inorganics13030067 crossref_primary_10_1007_s10971_024_06598_0 crossref_primary_10_3390_nano14050402 crossref_primary_10_1007_s10971_024_06549_9 |
Cites_doi | 10.1007/s10854-021-06734-4 10.1016/S0022-4596(05)80299-3 10.1088/0022-3727/43/45/455409 10.1039/D3RA06340B 10.1016/j.jpcs.2019.109079 10.1016/j.physb.2009.12.021 10.1107/S0021889869006558 10.1016/S0013-4686(00)00723-4 10.1103/PhysRevB.47.125 10.1016/j.jallcom.2009.11.152 10.1080/13642818208246429 10.1016/S0167-2738(03)00150-4 10.1007/s12648-014-0440-7 10.1016/j.mseb.2004.08.009 10.1109/IEVC.2014.7056095 10.1016/S0167-2738(02)00170-4 10.1039/D3RA05038F 10.1007/s12648-013-0371-8 10.1016/j.electacta.2017.11.099 10.1007/s00339-021-05118-z 10.1103/PhysRevB.44.7306 10.3390/molecules25173996 10.1007/s12648-019-01655-9 10.1016/j.jmmm.2023.170479 10.1016/j.ssc.2005.01.020 10.1007/s12648-019-01495-7 10.1007/s12648-017-1148-2 10.1007/s12648-020-01779-3 10.1016/j.powtec.2015.04.025 10.1038/s41598-021-03330-8 10.1002/0471716243 10.1103/PhysRevB.51.3297 10.1016/j.jallcom.2011.03.003 10.1002/pssa.200306741 10.1016/j.jallcom.2006.11.081 10.1016/j.inoche.2022.109310 10.1039/D1RA07177G 10.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P 10.1016/j.jssc.2008.10.010 10.1016/0032-3861(67)90021-3 10.1016/j.solidstatesciences.2009.12.014 10.1007/s10971-019-05054-8 10.2109/jcersj2.116.1278 10.1063/1.5112968 10.1016/j.jallcom.2012.04.094 10.1007/s12648-018-1344-8 10.1021/acsami.5b00911 10.1002/zaac.19814800919 10.1016/j.jallcom.2011.03.027 10.1143/JJAP.44.8066 10.1016/j.rinp.2017.02.013 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-023-03039-6 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 2753 |
ExternalDocumentID | 10_1007_s12648_023_03039_6 |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-70c8c7fce9d7dd0ad03f5e9147dd6869b127b131d7ea6b28046d0fa0c14e1fd13 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Fri Jul 25 04:03:40 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 03:02:39 EDT 2025 Fri Feb 21 02:41:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Conductivity Perovskite Impedance spectroscopy Rietveld analysis Modulus Sol–gel route |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-70c8c7fce9d7dd0ad03f5e9147dd6869b127b131d7ea6b28046d0fa0c14e1fd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1917-4399 |
PQID | 3068587297 |
PQPubID | 2034531 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3068587297 crossref_citationtrail_10_1007_s12648_023_03039_6 crossref_primary_10_1007_s12648_023_03039_6 springer_journals_10_1007_s12648_023_03039_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2024 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | SanderKLehmannUMuller-BuschbaumHKZeitschrift F Ur Anorganische und Allgemeine Chemie198148015310.1002/zaac.19814800919 BenamaraMZahmouliNKallekhABouzidiSEl MirLAlamriHRValenteMAJ. Magn. Magn. Mater.202356910.1016/j.jmmm.2023.170479 ArjunN.Results Phys.201779202017ResPh...7..920A10.1016/j.rinp.2017.02.013 NassarKIGraça RSC Adv.2023132402310.1039/D3RA05038F OueslatiAHlelFGuidaraKJ. Alloys Compd.201049250810.1016/j.jallcom.2009.11.152 ZhaoFYueZGuiZLiLJpn. J. Appl. Phys.20054480662005JaJAP..44.8066Z10.1143/JJAP.44.8066 DehurySKKhatuaDAcharyPGRIndian J. Phys.2019938372019InJPh..93..837D10.1007/s12648-018-1344-8 MabroukiAMessaoudiOMansouriMElgharbiSBardaouiARSC Adv.202111378962021RSCAd..1137896M10.1039/D1RA07177G NgaiKLWrighGBJ. Non-Cryst. Solid199823581 OmriDhahriEEs-SouniMCostaLCJ. Alloys Compd.201249717310.1016/j.jallcom.2012.04.094 RietveldHMJ. Appl. Crystallogr.19692651969JApCr...2...65R10.1107/S0021889869006558 PradhanDKSamantaryBKChaudharyRNPThakurAKMater. Sci. Eng. B2005116710.1016/j.mseb.2004.08.009 MostafaMFAbd-elalSTammamAKIndian J. Phys.201488492014InJPh..88...49M10.1007/s12648-013-0371-8 AlvarezFAlegriaAJ. Colmenero Phys. Rev. B19914473061991PhRvB..44.7306A10.1103/PhysRevB.44.7306 AlvarezFAlegriaAColmeneroJPhys Rev B1993471251993PhRvB..47..125A10.1103/PhysRevB.47.125 BijelićJTatarDHajraSSahuMKimSJJagličićZDjerdjIMolecules202025399610.3390/molecules25173996 KolodziejHSobczykLActa Phys. Polon A19713959 HossainAAtiqueUllahAKMSarathiGuinPRoySJ. Sol. Gel. Sci. Technol.20209347910.1007/s10971-019-05054-8 LiZZhangWWangHYangBElectrochim. Acta201725856110.1016/j.electacta.2017.11.099 BarsoukovEKimDHLeeH-SLeeHYakovlevaMGaoYEngelJFJ. Solid State Ionics20031611910.1016/S0167-2738(03)00150-4 KimJHJeongKWOhDGShinHJHongJMKimJSMoonJYLeeNChoiYJSci. Rep.202111237862021NatSR..1123786K10.1038/s41598-021-03330-8 HavriliakSNegamiSPolymer1967816110.1016/0032-3861(67)90021-3 TakedaYNishijimaMImanishiNKannoRYamamotoOTakanoMJ. Solid State Chem.199296721992JSSCh..96...72T10.1016/S0022-4596(05)80299-3 BenamaraMNassarKISoltaniSKallekhADhahriRDahmanHEl MirLRSC Adv.20231341286322023RSCAd..1328632B10.1039/D3RA06340B BhartiTPSolid Stat. Sci.2010124982010SSSci..12..498B10.1016/j.solidstatesciences.2009.12.014 SrinivasamurthyKMManjunathaKSitaloEIIndian J. Phys.2020945932020InJPh..94..593S10.1007/s12648-019-01495-7 GhoshSGhoshASolid State Ion.20221496710.1016/S0167-2738(02)00170-4 MigahedMDBakrNAAbdel-HamidMIEl-HannafyOEl-NimrMJ. Appl. Polym. Sci.19965965510.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P SugaharaTOhtakiMSoumaTJ. Ceram. Soc. Jpn.2008116127810.2109/jcersj2.116.1278 LilyKKumariKPrasadCChoudharyRNPJ. Alloys Compd.200845332510.1016/j.jallcom.2006.11.081 NadeemMAkhtarMJKhanAYSolid State Commun.20051344312005SSCom.134..431N10.1016/j.ssc.2005.01.020 Y. Olofsson, J. Groot, T. Katrašnik, E G. Tavcar, in Electric Vehicle Conference (IEVC) IEEE International 1–6 (2014) KhandySAGuptaDCJ. Phys. Chem. Solids201913510907910.1016/j.jpcs.2019.109079 ShimakawaKPhilos. Mag. B1982461231982PMagB..46..123S10.1080/13642818208246429 Bakr-MohamedMWangHFuessHPhys. D Appl. Phys.20104340910.1088/0022-3727/43/45/455409 QianXGuNChengZYangXDongSElectronichim. Acta200146182910.1016/S0013-4686(00)00723-4 AhmedEAAAbou-DinaMSIndian J. Phys.20209419172020InJPh..94.1917A10.1007/s12648-019-01655-9 MabroukiAChadhaHMessaoudiOBenaliAMnasriTDhahriEValenteMAElgharbiSDhahriAManaiLInorg. Chem. Commun.202213910.1016/j.inoche.2022.109310 ElliottSRPhilos. Mag. B197836129 SengwaRJChoudharySIndian J. Phys.2014884612014InJPh..88..461S10.1007/s12648-014-0440-7 MoritomoYTomiokaYAsamitsuATokuraYPhys. Rev. B19955132971995PhRvB..51.3297M10.1103/PhysRevB.51.3297 MahamoudHJ. Alloys Compd.2011509608310.1016/j.jallcom.2011.03.027 BarsoukovEMacdonaldJRImpedance Spectroscopy Theory, Experiment, and Applications20052New YorkWiley10.1002/0471716243 ChatterjeeSMahapatraPKChoudharyRNPThakurAKStatus Solidi A20042015882004PSSAR.201..588C10.1002/pssa.200306741 DuttaTPPhys. B201040514752010PhyB..405.1475D10.1016/j.physb.2009.12.021 SuJYangZZLuXMZhangJTGuLLuCJLiQCLiuJ-MZhuJSACS Appl. Mater. Interfaces201571326010.1021/acsami.5b00911 DasAKMeikapAKIndian J. Phys.2018926852018InJPh..92..685D10.1007/s12648-017-1148-2 SinghLWon KimISinBCWooSKHyunSHMandalKDLeeYPowder Technol.201528025610.1016/j.powtec.2015.04.025 M P Harikrishnan, A C Bose, in AIP Conference Proceedings2115 1 (2019) JonhsonDSoftware Zview–v2.3d2000ConnecticutScribner Associates Inc Rodriguez-Carbajal J. Program FullProf. Laboratoire Léon Brillouin (CEACNRS)35 LLB-JRS (1998) AhmedEAAAbou-DinaMSGhalebAFIndian J. Phys.20219511012021InJPh..95.1101A10.1007/s12648-020-01779-3 RanjanRKumarRKumarNBeheraBChoudharyRNPJ. Alloys Compd.2011509638810.1016/j.jallcom.2011.03.003 BenamaraMBouzidiSZahmouliNTeixeiraSSGraçaMPFEl MirLValenteMAAppl. Phys. A2022128110.1007/s00339-021-05118-z Ramez AnipourFCowieBDerakhshanSGreedanJECranswickLMDJ. Solid State Chem.20091821532009JSSCh.182..153R10.1016/j.jssc.2008.10.010 GangulliMHarish BhatMRaoKJPhys. Chem. Glasses199940297 MessaoudiOMabroukiAMoufdaMAlfhaidLAzharyAElgharbiSJ. Mater. Sci. Mater. Electron.2021322248110.1007/s10854-021-06734-4 M Gangulli (3039_CR43) 1999; 40 D Jonhson (3039_CR34) 2000 K Shimakawa (3039_CR49) 1982; 46 M Benamara (3039_CR2) 2023; 13 KI Nassar (3039_CR1) 2023; 13 F Ramez Anipour (3039_CR28) 2009; 182 A Hossain (3039_CR14) 2020; 93 TP Bharti (3039_CR53) 2010; 12 X Qian (3039_CR37) 2001; 46 E Barsoukov (3039_CR30) 2005 M Benamara (3039_CR4) 2022; 128 Omri (3039_CR56) 2012; 497 MF Mostafa (3039_CR15) 2014; 88 KL Ngai (3039_CR46) 1998; 235 F Alvarez (3039_CR47) 1991; 44 EAA Ahmed (3039_CR16) 2020; 94 M Nadeem (3039_CR41) 2005; 134 JH Kim (3039_CR12) 2021; 11 TP Dutta (3039_CR54) 2010; 405 K Sander (3039_CR39) 1981; 480 N. Arjun (3039_CR23) 2017; 7 A Mabrouki (3039_CR6) 2021; 11 EAA Ahmed (3039_CR17) 2021; 95 E Barsoukov (3039_CR29) 2003; 161 SK Dehury (3039_CR19) 2019; 93 S Chatterjee (3039_CR32) 2004; 201 M Bakr-Mohamed (3039_CR55) 2010; 43 A Mabrouki (3039_CR7) 2022; 139 O Messaoudi (3039_CR5) 2021; 32 T Sugahara (3039_CR11) 2008; 116 3039_CR44 SR Elliott (3039_CR50) 1978; 36 KM Srinivasamurthy (3039_CR18) 2020; 94 Z Li (3039_CR22) 2017; 258 A Oueslati (3039_CR35) 2010; 492 S Havriliak (3039_CR52) 1967; 8 F Alvarez (3039_CR48) 1993; 47 M Benamara (3039_CR3) 2023; 569 Y Moritomo (3039_CR27) 1995; 51 SA Khandy (3039_CR8) 2019; 135 R Ranjan (3039_CR57) 2011; 509 H Kolodziej (3039_CR36) 1971; 39 MD Migahed (3039_CR45) 1996; 59 RJ Sengwa (3039_CR20) 2014; 88 DK Pradhan (3039_CR40) 2005; 116 J Bijelić (3039_CR9) 2020; 25 J Su (3039_CR13) 2015; 7 S Ghosh (3039_CR51) 2022; 149 K Lily (3039_CR33) 2008; 453 HM Rietveld (3039_CR25) 1969; 2 H Mahamoud (3039_CR42) 2011; 509 L Singh (3039_CR31) 2015; 280 Y Takeda (3039_CR38) 1992; 96 AK Das (3039_CR21) 2018; 92 3039_CR26 3039_CR24 F Zhao (3039_CR10) 2005; 44 |
References_xml | – reference: OueslatiAHlelFGuidaraKJ. Alloys Compd.201049250810.1016/j.jallcom.2009.11.152 – reference: GangulliMHarish BhatMRaoKJPhys. Chem. Glasses199940297 – reference: ChatterjeeSMahapatraPKChoudharyRNPThakurAKStatus Solidi A20042015882004PSSAR.201..588C10.1002/pssa.200306741 – reference: BenamaraMBouzidiSZahmouliNTeixeiraSSGraçaMPFEl MirLValenteMAAppl. Phys. A2022128110.1007/s00339-021-05118-z – reference: ZhaoFYueZGuiZLiLJpn. J. Appl. Phys.20054480662005JaJAP..44.8066Z10.1143/JJAP.44.8066 – reference: BijelićJTatarDHajraSSahuMKimSJJagličićZDjerdjIMolecules202025399610.3390/molecules25173996 – reference: HavriliakSNegamiSPolymer1967816110.1016/0032-3861(67)90021-3 – reference: ElliottSRPhilos. Mag. B197836129 – reference: GhoshSGhoshASolid State Ion.20221496710.1016/S0167-2738(02)00170-4 – reference: NassarKIGraça RSC Adv.2023132402310.1039/D3RA05038F – reference: ShimakawaKPhilos. Mag. B1982461231982PMagB..46..123S10.1080/13642818208246429 – reference: BenamaraMNassarKISoltaniSKallekhADhahriRDahmanHEl MirLRSC Adv.20231341286322023RSCAd..1328632B10.1039/D3RA06340B – reference: AhmedEAAAbou-DinaMSIndian J. Phys.20209419172020InJPh..94.1917A10.1007/s12648-019-01655-9 – reference: JonhsonDSoftware Zview–v2.3d2000ConnecticutScribner Associates Inc – reference: PradhanDKSamantaryBKChaudharyRNPThakurAKMater. Sci. Eng. B2005116710.1016/j.mseb.2004.08.009 – reference: ArjunN.Results Phys.201779202017ResPh...7..920A10.1016/j.rinp.2017.02.013 – reference: TakedaYNishijimaMImanishiNKannoRYamamotoOTakanoMJ. Solid State Chem.199296721992JSSCh..96...72T10.1016/S0022-4596(05)80299-3 – reference: QianXGuNChengZYangXDongSElectronichim. Acta200146182910.1016/S0013-4686(00)00723-4 – reference: KhandySAGuptaDCJ. Phys. Chem. Solids201913510907910.1016/j.jpcs.2019.109079 – reference: SanderKLehmannUMuller-BuschbaumHKZeitschrift F Ur Anorganische und Allgemeine Chemie198148015310.1002/zaac.19814800919 – reference: MabroukiAMessaoudiOMansouriMElgharbiSBardaouiARSC Adv.202111378962021RSCAd..1137896M10.1039/D1RA07177G – reference: MigahedMDBakrNAAbdel-HamidMIEl-HannafyOEl-NimrMJ. Appl. Polym. Sci.19965965510.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P – reference: SrinivasamurthyKMManjunathaKSitaloEIIndian J. Phys.2020945932020InJPh..94..593S10.1007/s12648-019-01495-7 – reference: BarsoukovEMacdonaldJRImpedance Spectroscopy Theory, Experiment, and Applications20052New YorkWiley10.1002/0471716243 – reference: MessaoudiOMabroukiAMoufdaMAlfhaidLAzharyAElgharbiSJ. Mater. Sci. Mater. Electron.2021322248110.1007/s10854-021-06734-4 – reference: RietveldHMJ. Appl. Crystallogr.19692651969JApCr...2...65R10.1107/S0021889869006558 – reference: M P Harikrishnan, A C Bose, in AIP Conference Proceedings2115 1 (2019) – reference: MoritomoYTomiokaYAsamitsuATokuraYPhys. Rev. B19955132971995PhRvB..51.3297M10.1103/PhysRevB.51.3297 – reference: DuttaTPPhys. B201040514752010PhyB..405.1475D10.1016/j.physb.2009.12.021 – reference: SengwaRJChoudharySIndian J. Phys.2014884612014InJPh..88..461S10.1007/s12648-014-0440-7 – reference: MostafaMFAbd-elalSTammamAKIndian J. Phys.201488492014InJPh..88...49M10.1007/s12648-013-0371-8 – reference: BhartiTPSolid Stat. Sci.2010124982010SSSci..12..498B10.1016/j.solidstatesciences.2009.12.014 – reference: HossainAAtiqueUllahAKMSarathiGuinPRoySJ. Sol. Gel. Sci. Technol.20209347910.1007/s10971-019-05054-8 – reference: SinghLWon KimISinBCWooSKHyunSHMandalKDLeeYPowder Technol.201528025610.1016/j.powtec.2015.04.025 – reference: NadeemMAkhtarMJKhanAYSolid State Commun.20051344312005SSCom.134..431N10.1016/j.ssc.2005.01.020 – reference: Y. Olofsson, J. Groot, T. Katrašnik, E G. Tavcar, in Electric Vehicle Conference (IEVC) IEEE International 1–6 (2014) – reference: AhmedEAAAbou-DinaMSGhalebAFIndian J. Phys.20219511012021InJPh..95.1101A10.1007/s12648-020-01779-3 – reference: Bakr-MohamedMWangHFuessHPhys. D Appl. Phys.20104340910.1088/0022-3727/43/45/455409 – reference: BenamaraMZahmouliNKallekhABouzidiSEl MirLAlamriHRValenteMAJ. Magn. Magn. Mater.202356910.1016/j.jmmm.2023.170479 – reference: LilyKKumariKPrasadCChoudharyRNPJ. Alloys Compd.200845332510.1016/j.jallcom.2006.11.081 – reference: MahamoudHJ. Alloys Compd.2011509608310.1016/j.jallcom.2011.03.027 – reference: SugaharaTOhtakiMSoumaTJ. Ceram. Soc. Jpn.2008116127810.2109/jcersj2.116.1278 – reference: DasAKMeikapAKIndian J. Phys.2018926852018InJPh..92..685D10.1007/s12648-017-1148-2 – reference: Rodriguez-Carbajal J. Program FullProf. Laboratoire Léon Brillouin (CEACNRS)35 LLB-JRS (1998) – reference: NgaiKLWrighGBJ. Non-Cryst. Solid199823581 – reference: KolodziejHSobczykLActa Phys. Polon A19713959 – reference: BarsoukovEKimDHLeeH-SLeeHYakovlevaMGaoYEngelJFJ. Solid State Ionics20031611910.1016/S0167-2738(03)00150-4 – reference: AlvarezFAlegriaAColmeneroJPhys Rev B1993471251993PhRvB..47..125A10.1103/PhysRevB.47.125 – reference: OmriDhahriEEs-SouniMCostaLCJ. Alloys Compd.201249717310.1016/j.jallcom.2012.04.094 – reference: KimJHJeongKWOhDGShinHJHongJMKimJSMoonJYLeeNChoiYJSci. Rep.202111237862021NatSR..1123786K10.1038/s41598-021-03330-8 – reference: SuJYangZZLuXMZhangJTGuLLuCJLiQCLiuJ-MZhuJSACS Appl. Mater. Interfaces201571326010.1021/acsami.5b00911 – reference: MabroukiAChadhaHMessaoudiOBenaliAMnasriTDhahriEValenteMAElgharbiSDhahriAManaiLInorg. Chem. Commun.202213910.1016/j.inoche.2022.109310 – reference: AlvarezFAlegriaAJ. Colmenero Phys. Rev. B19914473061991PhRvB..44.7306A10.1103/PhysRevB.44.7306 – reference: DehurySKKhatuaDAcharyPGRIndian J. Phys.2019938372019InJPh..93..837D10.1007/s12648-018-1344-8 – reference: Ramez AnipourFCowieBDerakhshanSGreedanJECranswickLMDJ. Solid State Chem.20091821532009JSSCh.182..153R10.1016/j.jssc.2008.10.010 – reference: RanjanRKumarRKumarNBeheraBChoudharyRNPJ. Alloys Compd.2011509638810.1016/j.jallcom.2011.03.003 – reference: LiZZhangWWangHYangBElectrochim. Acta201725856110.1016/j.electacta.2017.11.099 – volume: 32 start-page: 22481 year: 2021 ident: 3039_CR5 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-021-06734-4 – volume: 96 start-page: 72 year: 1992 ident: 3039_CR38 publication-title: J. Solid State Chem. doi: 10.1016/S0022-4596(05)80299-3 – volume: 43 start-page: 409 year: 2010 ident: 3039_CR55 publication-title: Phys. D Appl. Phys. doi: 10.1088/0022-3727/43/45/455409 – volume: 13 start-page: 28632 issue: 41 year: 2023 ident: 3039_CR2 publication-title: RSC Adv. doi: 10.1039/D3RA06340B – volume: 135 start-page: 109079 year: 2019 ident: 3039_CR8 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2019.109079 – volume: 405 start-page: 1475 year: 2010 ident: 3039_CR54 publication-title: Phys. B doi: 10.1016/j.physb.2009.12.021 – volume: 2 start-page: 65 year: 1969 ident: 3039_CR25 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889869006558 – volume: 46 start-page: 1829 year: 2001 ident: 3039_CR37 publication-title: Electronichim. Acta doi: 10.1016/S0013-4686(00)00723-4 – volume: 47 start-page: 125 year: 1993 ident: 3039_CR48 publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.125 – volume: 492 start-page: 508 year: 2010 ident: 3039_CR35 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.11.152 – volume: 46 start-page: 123 year: 1982 ident: 3039_CR49 publication-title: Philos. Mag. B doi: 10.1080/13642818208246429 – volume: 161 start-page: 19 year: 2003 ident: 3039_CR29 publication-title: J. Solid State Ionics doi: 10.1016/S0167-2738(03)00150-4 – volume: 88 start-page: 461 year: 2014 ident: 3039_CR20 publication-title: Indian J. Phys. doi: 10.1007/s12648-014-0440-7 – ident: 3039_CR26 – volume: 116 start-page: 7 year: 2005 ident: 3039_CR40 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2004.08.009 – ident: 3039_CR44 doi: 10.1109/IEVC.2014.7056095 – volume: 149 start-page: 67 year: 2022 ident: 3039_CR51 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(02)00170-4 – volume-title: Software Zview–v2.3d year: 2000 ident: 3039_CR34 – volume: 13 start-page: 24023 year: 2023 ident: 3039_CR1 publication-title: Graça RSC Adv. doi: 10.1039/D3RA05038F – volume: 88 start-page: 49 year: 2014 ident: 3039_CR15 publication-title: Indian J. Phys. doi: 10.1007/s12648-013-0371-8 – volume: 258 start-page: 561 year: 2017 ident: 3039_CR22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.099 – volume: 128 start-page: 1 year: 2022 ident: 3039_CR4 publication-title: Appl. Phys. A doi: 10.1007/s00339-021-05118-z – volume: 44 start-page: 7306 year: 1991 ident: 3039_CR47 publication-title: J. Colmenero Phys. Rev. B doi: 10.1103/PhysRevB.44.7306 – volume: 39 start-page: 59 year: 1971 ident: 3039_CR36 publication-title: Acta Phys. Polon A – volume: 25 start-page: 3996 year: 2020 ident: 3039_CR9 publication-title: Molecules doi: 10.3390/molecules25173996 – volume: 94 start-page: 1917 year: 2020 ident: 3039_CR16 publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01655-9 – volume: 569 year: 2023 ident: 3039_CR3 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.170479 – volume: 134 start-page: 431 year: 2005 ident: 3039_CR41 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2005.01.020 – volume: 94 start-page: 593 year: 2020 ident: 3039_CR18 publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01495-7 – volume: 92 start-page: 685 year: 2018 ident: 3039_CR21 publication-title: Indian J. Phys. doi: 10.1007/s12648-017-1148-2 – volume: 95 start-page: 1101 year: 2021 ident: 3039_CR17 publication-title: Indian J. Phys. doi: 10.1007/s12648-020-01779-3 – volume: 280 start-page: 256 year: 2015 ident: 3039_CR31 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.04.025 – volume: 11 start-page: 23786 year: 2021 ident: 3039_CR12 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03330-8 – volume-title: Impedance Spectroscopy Theory, Experiment, and Applications year: 2005 ident: 3039_CR30 doi: 10.1002/0471716243 – volume: 51 start-page: 3297 year: 1995 ident: 3039_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.3297 – volume: 509 start-page: 6388 year: 2011 ident: 3039_CR57 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.03.003 – volume: 40 start-page: 297 year: 1999 ident: 3039_CR43 publication-title: Phys. Chem. Glasses – volume: 201 start-page: 588 year: 2004 ident: 3039_CR32 publication-title: Status Solidi A doi: 10.1002/pssa.200306741 – volume: 453 start-page: 325 year: 2008 ident: 3039_CR33 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.11.081 – volume: 139 year: 2022 ident: 3039_CR7 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2022.109310 – volume: 11 start-page: 37896 year: 2021 ident: 3039_CR6 publication-title: RSC Adv. doi: 10.1039/D1RA07177G – volume: 235 start-page: 81 year: 1998 ident: 3039_CR46 publication-title: J. Non-Cryst. Solid – volume: 59 start-page: 655 year: 1996 ident: 3039_CR45 publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P – volume: 182 start-page: 153 year: 2009 ident: 3039_CR28 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2008.10.010 – volume: 8 start-page: 161 year: 1967 ident: 3039_CR52 publication-title: Polymer doi: 10.1016/0032-3861(67)90021-3 – volume: 12 start-page: 498 year: 2010 ident: 3039_CR53 publication-title: Solid Stat. Sci. doi: 10.1016/j.solidstatesciences.2009.12.014 – volume: 36 start-page: 129 year: 1978 ident: 3039_CR50 publication-title: Philos. Mag. B – volume: 93 start-page: 479 year: 2020 ident: 3039_CR14 publication-title: J. Sol. Gel. Sci. Technol. doi: 10.1007/s10971-019-05054-8 – volume: 116 start-page: 1278 year: 2008 ident: 3039_CR11 publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.116.1278 – ident: 3039_CR24 doi: 10.1063/1.5112968 – volume: 497 start-page: 173 year: 2012 ident: 3039_CR56 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.04.094 – volume: 93 start-page: 837 year: 2019 ident: 3039_CR19 publication-title: Indian J. Phys. doi: 10.1007/s12648-018-1344-8 – volume: 7 start-page: 13260 year: 2015 ident: 3039_CR13 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00911 – volume: 480 start-page: 153 year: 1981 ident: 3039_CR39 publication-title: Zeitschrift F Ur Anorganische und Allgemeine Chemie doi: 10.1002/zaac.19814800919 – volume: 509 start-page: 6083 year: 2011 ident: 3039_CR42 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.03.027 – volume: 44 start-page: 8066 year: 2005 ident: 3039_CR10 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.8066 – volume: 7 start-page: 920 year: 2017 ident: 3039_CR23 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.02.013 |
SSID | ssj0069175 |
Score | 2.3727472 |
Snippet | This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO
3
, synthesized by the sol–gel... This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO3, synthesized by the sol–gel reaction... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2745 |
SubjectTerms | Astrophysics and Astroparticles Bismuth Dielectric relaxation Diffraction patterns Electrical properties Equivalent circuits Lanthanum Lanthanum oxides Niobium Original Paper Perovskites Physics Physics and Astronomy Room temperature Sol-gel processes Thermal stability |
Title | Structural, electrical properties of bismuth and niobium-doped LaNiO3 perovskite obtained by sol–gel route for future electronic device applications |
URI | https://link.springer.com/article/10.1007/s12648-023-03039-6 https://www.proquest.com/docview/3068587297 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoqFIvCGirLi_NgVuxFCdxbB8XxIIALYd2JThF8SPtSpAgsovEjf-AxA_klzDOg9CKViKXKBrHB39jz4w9_oaQHcPR6DnDac5DQWPHQ6p1ZqgIuVTCZQ4fn20xTo4m8fE5P28vhVVdtnt3JFmv1P1lN5-MRdHGUFTMSNHkA1niGLt7vZ6Ew279TTAAqRMXlYgoi7lsr8q83cef5qj3Mf86Fq2tzWiFLLduIgwbXFfJgivWyMc6XdNUn8njj5r21VNm7EJTycYPNlz7rfUbz5EKZQ56Wl3NZ78hKywU01JP51fUYgMLp9l4ehaBJwm_rfz-LZTa7xGgSN8BquPT_cMvdwk35Rxl6NdCwz0CfdUcsM4vMvD6BPwLmYwOfu4f0bbCAjU49WZUBEYakRunrLA2yGwQ5dwpFuNXIhOlWSg0i5hF1BIdSgymbZBngWGxY7ll0VeyWJSF-0Yg0zLMhVTcqCxWGMZxbpLAWeYi7J5FA8K6gU5NSz_uq2Bcpj1xsgcnRXDSGpw0GZDvL_9cN-Qb_2292eGXthOxSjEiklxiBCEGZLfDtBf_u7f19zXfIJ9QFeMmkXeTLKIWuC10V2Z6mywNR3t7Y_8-vDg52K619Rmeb-fH |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i6r2UvpCXQqtD70VoziJY_uIELAt2-2hrERPUfxIuwISRHaRyon_UIkfyC9hnAdpUVuJ3CJPrNgee2bsz98AvDccjZ4znOY8FDR2PKRaZ4aKkEslXObw8WiLSTKaxp8O-WF7Kazq0O7dkWS9UveX3TwYi6KNoaiYkaLJQ1iKMQbnA1ja2vu2v9OtwAmGIDV0UYmIspjL9rLM32v50yD1Xuadg9Ha3uwuw7T70wZmcrS5mOtNc3GHxPG-TXkGT1sHlGw1GvMcHrjiBTyqgaCmeglXX2tCWU_GsUGaHDl-GMmp37Q_8-yrpMyJnlUni_kPkhWWFLNSzxYn1KKAJeNsMvsSEU8_fl75nWFSar_7gEX6J0FFv7789d0dk7NygWXoMZOG1YT0-XiIdX75Ir-frb-C6e7OwfaItrkbqMFJPaciMNKI3DhlhbVBZoMo506xGN8SmSjNQqFZxCzqQ6JDiWG6DfIsMCx2LLcsWoFBURbuNZBMyzAXUnGjslhhgMi5SQJnmYuwehYNgXUDmJqW2Nzn1zhOe0pm398p9nda93eaDOHD7TenDa3Hf6XXOr1I2ylepRhrSS4xNhFD2OiGuS_-d22r9xN_B49HB5_H6fjjZP8NPAnRqWrgwmswQI1w6-gUzfXbdg7cAF8BBLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELboIqpeELRUbIEyh96KRZzEsX1cASta0LZSuxK3KH4EVoJkxe5W6o3_gMQP5JcwzqOhFVQit8iPg7-xZ8ae-YaQT4aj0nOG05yHgsaOh1TrzFARcqmEyxx-PtpilByP469n_OxRFn8V7d4-SdY5DZ6lqZjvT22-3yW--cAsivqGopBGiiavyDIex8wHdY3DQXsWJ-iMVEGMSkSUxVw2aTNPz_G3aurszX-eSCvNM1wjq43JCIMa43Wy5Iq3ZKUK3TSzd-TuR0UB6-kz9qCuauMXHqb-mv3a86VCmYOezK4W8wvICgvFpNSTxRW12MHCaTaafIvAE4b_mvm7XCi1vy_AJv0bUDTvb27P3SVclwtsQxsXah4S6CrogHX-wIHHr-EbZDw8-nlwTJtqC9TgNpxTERhpRG6cssLaILNBlHOnWIx_iUyUZqHQuMQWEUx0KNGxtkGeBYbFjuWWRe9JrygLt0kg0zLMhVTcqCxW6NJxbpLAWeYinJ5FfcLahU5NQ0XuK2Jcph2JsgcnRXDSCpw06ZPPf8ZMayKO__bebvFLm005S9E7klyiNyH6ZK_FtGt-frYPL-u-S15_Pxymp19GJ1vkTYhWUB3fu016KBBuB62Yuf5YCeoDZRnr5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+electrical+properties+of+bismuth+and+niobium-doped+LaNiO3+perovskite+obtained+by+sol%E2%80%93gel+route+for+future+electronic+device+applications&rft.jtitle=Indian+journal+of+physics&rft.au=Nassar%2C+Kais+Iben&rft.au=Benamara%2C+M.&rft.au=Kechiche%2C+L.&rft.au=Teixeira%2C+S.+Soreto&rft.date=2024-07-01&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=98&rft.issue=8&rft.spage=2745&rft.epage=2753&rft_id=info:doi/10.1007%2Fs12648-023-03039-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12648_023_03039_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |