Structural, electrical properties of bismuth and niobium-doped LaNiO3 perovskite obtained by sol–gel route for future electronic device applications

This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO 3 , synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refine...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of physics Vol. 98; no. 8; pp. 2745 - 2753
Main Authors Nassar, Kais Iben, Benamara, M., Kechiche, L., Teixeira, S. Soreto, Graça, M. P. F.
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0973-1458
0974-9845
DOI10.1007/s12648-023-03039-6

Cover

Loading…
Abstract This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO 3 , synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refinement of the X-ray diffraction pattern suggests that the compound has a monoclinic phase at room temperature with a P 2 1 / n space group. Scanning electron microscopy surface morphology analysis of the sample showed closed packing of grains with good density and very little porosity. The frequency-dependent modulus of the material is investigated in the temperature range from 200 K to 360 K and in range frequency between 1 kHz and 1 MHz. The Cole–Cole model is used to analyze the dielectric relaxation phenomenon. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element, where the ideal capacitance part is replaced by a constant phase element. The frequency-dependent conductivity spectra follow the Jonscher power law. Nevertheless, the Arrhenius-type conduction mechanism was found to be active in the sample with activation energy of 0.168 eV. The electrical property of the sample was found to be independent of temperatures, making it a potential candidate for thermally stable capacitor application.
AbstractList This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO3, synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refinement of the X-ray diffraction pattern suggests that the compound has a monoclinic phase at room temperature with a P21/n space group. Scanning electron microscopy surface morphology analysis of the sample showed closed packing of grains with good density and very little porosity. The frequency-dependent modulus of the material is investigated in the temperature range from 200 K to 360 K and in range frequency between 1 kHz and 1 MHz. The Cole–Cole model is used to analyze the dielectric relaxation phenomenon. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element, where the ideal capacitance part is replaced by a constant phase element. The frequency-dependent conductivity spectra follow the Jonscher power law. Nevertheless, the Arrhenius-type conduction mechanism was found to be active in the sample with activation energy of 0.168 eV. The electrical property of the sample was found to be independent of temperatures, making it a potential candidate for thermally stable capacitor application.
This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO 3 , synthesized by the sol–gel reaction technique that was investigated. The prepared material was doped with bismuth and niobium and studied their properties. The Rietveld refinement of the X-ray diffraction pattern suggests that the compound has a monoclinic phase at room temperature with a P 2 1 / n space group. Scanning electron microscopy surface morphology analysis of the sample showed closed packing of grains with good density and very little porosity. The frequency-dependent modulus of the material is investigated in the temperature range from 200 K to 360 K and in range frequency between 1 kHz and 1 MHz. The Cole–Cole model is used to analyze the dielectric relaxation phenomenon. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element, where the ideal capacitance part is replaced by a constant phase element. The frequency-dependent conductivity spectra follow the Jonscher power law. Nevertheless, the Arrhenius-type conduction mechanism was found to be active in the sample with activation energy of 0.168 eV. The electrical property of the sample was found to be independent of temperatures, making it a potential candidate for thermally stable capacitor application.
Author Teixeira, S. Soreto
Benamara, M.
Graça, M. P. F.
Nassar, Kais Iben
Kechiche, L.
Author_xml – sequence: 1
  givenname: Kais Iben
  orcidid: 0000-0002-1917-4399
  surname: Nassar
  fullname: Nassar, Kais Iben
  email: kaisibnnassar12@gmail.com
  organization: I3N-Aveiro, Department of Physics, University of Aveiro
– sequence: 2
  givenname: M.
  surname: Benamara
  fullname: Benamara, M.
  organization: Laboratory of Physics of Materials and Nanomaterials Applied to the Environment, Faculty of Sciences of Gabes, University of Gabes
– sequence: 3
  givenname: L.
  surname: Kechiche
  fullname: Kechiche, L.
  organization: Department of Chemistry, College of Science, King Khalid University
– sequence: 4
  givenname: S. Soreto
  surname: Teixeira
  fullname: Teixeira, S. Soreto
  organization: I3N-Aveiro, Department of Physics, University of Aveiro
– sequence: 5
  givenname: M. P. F.
  surname: Graça
  fullname: Graça, M. P. F.
  organization: I3N-Aveiro, Department of Physics, University of Aveiro
BookMark eNp9kcFuFSEUholpE9tbX8AViVtpYZgBZmkabU1u7EJdEwYOlToXRmCadNd3MPEBfRLx3iYmLroCcv6P_5zzn6KjmCIg9JrRc0apvCisE70itOOEcspHIl6gEzrKnoyqH472d05YP6iX6LSUO0rFyORwgn59rnm1dc1mfothBltzsGbGS04L5Bqg4OTxFMpurd-wiQ7HkKaw7ohrAoe35lO44bhp0335HirgNFUTYitND7ik-ffjz1uYcU5rq_mUsV-bGzx5pRgsdnAfLGCzLHPzriHFcoaOvZkLvHo6N-jrh_dfLq_J9ubq4-W7LbGcjZVIapWV3sLopHPUOMr9ACPr20soMU6skxPjzEkwYuoU7YWj3lDLemDeMb5Bbw7_tnl_rFCqvktrjs1ScyrUoGTXFrdB6qCyOZWSwWsb6r7Rmk2YNaP6bwr6kIJuKeh9Clo0tPsPXXLYmfzwPMQPUGnieAv5X1fPUH8AJsmhMQ
CitedBy_id crossref_primary_10_3390_inorganics13030067
crossref_primary_10_1007_s10971_024_06598_0
crossref_primary_10_3390_nano14050402
crossref_primary_10_1007_s10971_024_06549_9
Cites_doi 10.1007/s10854-021-06734-4
10.1016/S0022-4596(05)80299-3
10.1088/0022-3727/43/45/455409
10.1039/D3RA06340B
10.1016/j.jpcs.2019.109079
10.1016/j.physb.2009.12.021
10.1107/S0021889869006558
10.1016/S0013-4686(00)00723-4
10.1103/PhysRevB.47.125
10.1016/j.jallcom.2009.11.152
10.1080/13642818208246429
10.1016/S0167-2738(03)00150-4
10.1007/s12648-014-0440-7
10.1016/j.mseb.2004.08.009
10.1109/IEVC.2014.7056095
10.1016/S0167-2738(02)00170-4
10.1039/D3RA05038F
10.1007/s12648-013-0371-8
10.1016/j.electacta.2017.11.099
10.1007/s00339-021-05118-z
10.1103/PhysRevB.44.7306
10.3390/molecules25173996
10.1007/s12648-019-01655-9
10.1016/j.jmmm.2023.170479
10.1016/j.ssc.2005.01.020
10.1007/s12648-019-01495-7
10.1007/s12648-017-1148-2
10.1007/s12648-020-01779-3
10.1016/j.powtec.2015.04.025
10.1038/s41598-021-03330-8
10.1002/0471716243
10.1103/PhysRevB.51.3297
10.1016/j.jallcom.2011.03.003
10.1002/pssa.200306741
10.1016/j.jallcom.2006.11.081
10.1016/j.inoche.2022.109310
10.1039/D1RA07177G
10.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P
10.1016/j.jssc.2008.10.010
10.1016/0032-3861(67)90021-3
10.1016/j.solidstatesciences.2009.12.014
10.1007/s10971-019-05054-8
10.2109/jcersj2.116.1278
10.1063/1.5112968
10.1016/j.jallcom.2012.04.094
10.1007/s12648-018-1344-8
10.1021/acsami.5b00911
10.1002/zaac.19814800919
10.1016/j.jallcom.2011.03.027
10.1143/JJAP.44.8066
10.1016/j.rinp.2017.02.013
ContentType Journal Article
Copyright Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1007/s12648-023-03039-6
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-9845
EndPage 2753
ExternalDocumentID 10_1007_s12648_023_03039_6
GroupedDBID -EM
04Q
04W
06D
0R~
0VY
203
29I
29~
2JN
2KG
2VQ
30V
3V.
406
408
5GY
5VS
67Z
8FE
8FG
8G5
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACCUX
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
C~6
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M2O
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9T
PQQKQ
PROAC
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
Z7X
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7U5
8FD
ABRTQ
H8D
L7M
ID FETCH-LOGICAL-c319t-70c8c7fce9d7dd0ad03f5e9147dd6869b127b131d7ea6b28046d0fa0c14e1fd13
IEDL.DBID U2A
ISSN 0973-1458
IngestDate Fri Jul 25 04:03:40 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 03:02:39 EDT 2025
Fri Feb 21 02:41:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Conductivity
Perovskite
Impedance spectroscopy
Rietveld analysis
Modulus
Sol–gel route
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-70c8c7fce9d7dd0ad03f5e9147dd6869b127b131d7ea6b28046d0fa0c14e1fd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1917-4399
PQID 3068587297
PQPubID 2034531
PageCount 9
ParticipantIDs proquest_journals_3068587297
crossref_citationtrail_10_1007_s12648_023_03039_6
crossref_primary_10_1007_s12648_023_03039_6
springer_journals_10_1007_s12648_023_03039_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: West Bengal
PublicationTitle Indian journal of physics
PublicationTitleAbbrev Indian J Phys
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References SanderKLehmannUMuller-BuschbaumHKZeitschrift F Ur Anorganische und Allgemeine Chemie198148015310.1002/zaac.19814800919
BenamaraMZahmouliNKallekhABouzidiSEl MirLAlamriHRValenteMAJ. Magn. Magn. Mater.202356910.1016/j.jmmm.2023.170479
ArjunN.Results Phys.201779202017ResPh...7..920A10.1016/j.rinp.2017.02.013
NassarKIGraça RSC Adv.2023132402310.1039/D3RA05038F
OueslatiAHlelFGuidaraKJ. Alloys Compd.201049250810.1016/j.jallcom.2009.11.152
ZhaoFYueZGuiZLiLJpn. J. Appl. Phys.20054480662005JaJAP..44.8066Z10.1143/JJAP.44.8066
DehurySKKhatuaDAcharyPGRIndian J. Phys.2019938372019InJPh..93..837D10.1007/s12648-018-1344-8
MabroukiAMessaoudiOMansouriMElgharbiSBardaouiARSC Adv.202111378962021RSCAd..1137896M10.1039/D1RA07177G
NgaiKLWrighGBJ. Non-Cryst. Solid199823581
OmriDhahriEEs-SouniMCostaLCJ. Alloys Compd.201249717310.1016/j.jallcom.2012.04.094
RietveldHMJ. Appl. Crystallogr.19692651969JApCr...2...65R10.1107/S0021889869006558
PradhanDKSamantaryBKChaudharyRNPThakurAKMater. Sci. Eng. B2005116710.1016/j.mseb.2004.08.009
MostafaMFAbd-elalSTammamAKIndian J. Phys.201488492014InJPh..88...49M10.1007/s12648-013-0371-8
AlvarezFAlegriaAJ. Colmenero Phys. Rev. B19914473061991PhRvB..44.7306A10.1103/PhysRevB.44.7306
AlvarezFAlegriaAColmeneroJPhys Rev B1993471251993PhRvB..47..125A10.1103/PhysRevB.47.125
BijelićJTatarDHajraSSahuMKimSJJagličićZDjerdjIMolecules202025399610.3390/molecules25173996
KolodziejHSobczykLActa Phys. Polon A19713959
HossainAAtiqueUllahAKMSarathiGuinPRoySJ. Sol. Gel. Sci. Technol.20209347910.1007/s10971-019-05054-8
LiZZhangWWangHYangBElectrochim. Acta201725856110.1016/j.electacta.2017.11.099
BarsoukovEKimDHLeeH-SLeeHYakovlevaMGaoYEngelJFJ. Solid State Ionics20031611910.1016/S0167-2738(03)00150-4
KimJHJeongKWOhDGShinHJHongJMKimJSMoonJYLeeNChoiYJSci. Rep.202111237862021NatSR..1123786K10.1038/s41598-021-03330-8
HavriliakSNegamiSPolymer1967816110.1016/0032-3861(67)90021-3
TakedaYNishijimaMImanishiNKannoRYamamotoOTakanoMJ. Solid State Chem.199296721992JSSCh..96...72T10.1016/S0022-4596(05)80299-3
BenamaraMNassarKISoltaniSKallekhADhahriRDahmanHEl MirLRSC Adv.20231341286322023RSCAd..1328632B10.1039/D3RA06340B
BhartiTPSolid Stat. Sci.2010124982010SSSci..12..498B10.1016/j.solidstatesciences.2009.12.014
SrinivasamurthyKMManjunathaKSitaloEIIndian J. Phys.2020945932020InJPh..94..593S10.1007/s12648-019-01495-7
GhoshSGhoshASolid State Ion.20221496710.1016/S0167-2738(02)00170-4
MigahedMDBakrNAAbdel-HamidMIEl-HannafyOEl-NimrMJ. Appl. Polym. Sci.19965965510.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P
SugaharaTOhtakiMSoumaTJ. Ceram. Soc. Jpn.2008116127810.2109/jcersj2.116.1278
LilyKKumariKPrasadCChoudharyRNPJ. Alloys Compd.200845332510.1016/j.jallcom.2006.11.081
NadeemMAkhtarMJKhanAYSolid State Commun.20051344312005SSCom.134..431N10.1016/j.ssc.2005.01.020
Y. Olofsson, J. Groot, T. Katrašnik, E G. Tavcar, in Electric Vehicle Conference (IEVC) IEEE International 1–6 (2014)
KhandySAGuptaDCJ. Phys. Chem. Solids201913510907910.1016/j.jpcs.2019.109079
ShimakawaKPhilos. Mag. B1982461231982PMagB..46..123S10.1080/13642818208246429
Bakr-MohamedMWangHFuessHPhys. D Appl. Phys.20104340910.1088/0022-3727/43/45/455409
QianXGuNChengZYangXDongSElectronichim. Acta200146182910.1016/S0013-4686(00)00723-4
AhmedEAAAbou-DinaMSIndian J. Phys.20209419172020InJPh..94.1917A10.1007/s12648-019-01655-9
MabroukiAChadhaHMessaoudiOBenaliAMnasriTDhahriEValenteMAElgharbiSDhahriAManaiLInorg. Chem. Commun.202213910.1016/j.inoche.2022.109310
ElliottSRPhilos. Mag. B197836129
SengwaRJChoudharySIndian J. Phys.2014884612014InJPh..88..461S10.1007/s12648-014-0440-7
MoritomoYTomiokaYAsamitsuATokuraYPhys. Rev. B19955132971995PhRvB..51.3297M10.1103/PhysRevB.51.3297
MahamoudHJ. Alloys Compd.2011509608310.1016/j.jallcom.2011.03.027
BarsoukovEMacdonaldJRImpedance Spectroscopy Theory, Experiment, and Applications20052New YorkWiley10.1002/0471716243
ChatterjeeSMahapatraPKChoudharyRNPThakurAKStatus Solidi A20042015882004PSSAR.201..588C10.1002/pssa.200306741
DuttaTPPhys. B201040514752010PhyB..405.1475D10.1016/j.physb.2009.12.021
SuJYangZZLuXMZhangJTGuLLuCJLiQCLiuJ-MZhuJSACS Appl. Mater. Interfaces201571326010.1021/acsami.5b00911
DasAKMeikapAKIndian J. Phys.2018926852018InJPh..92..685D10.1007/s12648-017-1148-2
SinghLWon KimISinBCWooSKHyunSHMandalKDLeeYPowder Technol.201528025610.1016/j.powtec.2015.04.025
M P Harikrishnan, A C Bose, in AIP Conference Proceedings2115 1 (2019)
JonhsonDSoftware Zview–v2.3d2000ConnecticutScribner Associates Inc
Rodriguez-Carbajal J. Program FullProf. Laboratoire Léon Brillouin (CEACNRS)35 LLB-JRS (1998)
AhmedEAAAbou-DinaMSGhalebAFIndian J. Phys.20219511012021InJPh..95.1101A10.1007/s12648-020-01779-3
RanjanRKumarRKumarNBeheraBChoudharyRNPJ. Alloys Compd.2011509638810.1016/j.jallcom.2011.03.003
BenamaraMBouzidiSZahmouliNTeixeiraSSGraçaMPFEl MirLValenteMAAppl. Phys. A2022128110.1007/s00339-021-05118-z
Ramez AnipourFCowieBDerakhshanSGreedanJECranswickLMDJ. Solid State Chem.20091821532009JSSCh.182..153R10.1016/j.jssc.2008.10.010
GangulliMHarish BhatMRaoKJPhys. Chem. Glasses199940297
MessaoudiOMabroukiAMoufdaMAlfhaidLAzharyAElgharbiSJ. Mater. Sci. Mater. Electron.2021322248110.1007/s10854-021-06734-4
M Gangulli (3039_CR43) 1999; 40
D Jonhson (3039_CR34) 2000
K Shimakawa (3039_CR49) 1982; 46
M Benamara (3039_CR2) 2023; 13
KI Nassar (3039_CR1) 2023; 13
F Ramez Anipour (3039_CR28) 2009; 182
A Hossain (3039_CR14) 2020; 93
TP Bharti (3039_CR53) 2010; 12
X Qian (3039_CR37) 2001; 46
E Barsoukov (3039_CR30) 2005
M Benamara (3039_CR4) 2022; 128
Omri (3039_CR56) 2012; 497
MF Mostafa (3039_CR15) 2014; 88
KL Ngai (3039_CR46) 1998; 235
F Alvarez (3039_CR47) 1991; 44
EAA Ahmed (3039_CR16) 2020; 94
M Nadeem (3039_CR41) 2005; 134
JH Kim (3039_CR12) 2021; 11
TP Dutta (3039_CR54) 2010; 405
K Sander (3039_CR39) 1981; 480
N. Arjun (3039_CR23) 2017; 7
A Mabrouki (3039_CR6) 2021; 11
EAA Ahmed (3039_CR17) 2021; 95
E Barsoukov (3039_CR29) 2003; 161
SK Dehury (3039_CR19) 2019; 93
S Chatterjee (3039_CR32) 2004; 201
M Bakr-Mohamed (3039_CR55) 2010; 43
A Mabrouki (3039_CR7) 2022; 139
O Messaoudi (3039_CR5) 2021; 32
T Sugahara (3039_CR11) 2008; 116
3039_CR44
SR Elliott (3039_CR50) 1978; 36
KM Srinivasamurthy (3039_CR18) 2020; 94
Z Li (3039_CR22) 2017; 258
A Oueslati (3039_CR35) 2010; 492
S Havriliak (3039_CR52) 1967; 8
F Alvarez (3039_CR48) 1993; 47
M Benamara (3039_CR3) 2023; 569
Y Moritomo (3039_CR27) 1995; 51
SA Khandy (3039_CR8) 2019; 135
R Ranjan (3039_CR57) 2011; 509
H Kolodziej (3039_CR36) 1971; 39
MD Migahed (3039_CR45) 1996; 59
RJ Sengwa (3039_CR20) 2014; 88
DK Pradhan (3039_CR40) 2005; 116
J Bijelić (3039_CR9) 2020; 25
J Su (3039_CR13) 2015; 7
S Ghosh (3039_CR51) 2022; 149
K Lily (3039_CR33) 2008; 453
HM Rietveld (3039_CR25) 1969; 2
H Mahamoud (3039_CR42) 2011; 509
L Singh (3039_CR31) 2015; 280
Y Takeda (3039_CR38) 1992; 96
AK Das (3039_CR21) 2018; 92
3039_CR26
3039_CR24
F Zhao (3039_CR10) 2005; 44
References_xml – reference: OueslatiAHlelFGuidaraKJ. Alloys Compd.201049250810.1016/j.jallcom.2009.11.152
– reference: GangulliMHarish BhatMRaoKJPhys. Chem. Glasses199940297
– reference: ChatterjeeSMahapatraPKChoudharyRNPThakurAKStatus Solidi A20042015882004PSSAR.201..588C10.1002/pssa.200306741
– reference: BenamaraMBouzidiSZahmouliNTeixeiraSSGraçaMPFEl MirLValenteMAAppl. Phys. A2022128110.1007/s00339-021-05118-z
– reference: ZhaoFYueZGuiZLiLJpn. J. Appl. Phys.20054480662005JaJAP..44.8066Z10.1143/JJAP.44.8066
– reference: BijelićJTatarDHajraSSahuMKimSJJagličićZDjerdjIMolecules202025399610.3390/molecules25173996
– reference: HavriliakSNegamiSPolymer1967816110.1016/0032-3861(67)90021-3
– reference: ElliottSRPhilos. Mag. B197836129
– reference: GhoshSGhoshASolid State Ion.20221496710.1016/S0167-2738(02)00170-4
– reference: NassarKIGraça RSC Adv.2023132402310.1039/D3RA05038F
– reference: ShimakawaKPhilos. Mag. B1982461231982PMagB..46..123S10.1080/13642818208246429
– reference: BenamaraMNassarKISoltaniSKallekhADhahriRDahmanHEl MirLRSC Adv.20231341286322023RSCAd..1328632B10.1039/D3RA06340B
– reference: AhmedEAAAbou-DinaMSIndian J. Phys.20209419172020InJPh..94.1917A10.1007/s12648-019-01655-9
– reference: JonhsonDSoftware Zview–v2.3d2000ConnecticutScribner Associates Inc
– reference: PradhanDKSamantaryBKChaudharyRNPThakurAKMater. Sci. Eng. B2005116710.1016/j.mseb.2004.08.009
– reference: ArjunN.Results Phys.201779202017ResPh...7..920A10.1016/j.rinp.2017.02.013
– reference: TakedaYNishijimaMImanishiNKannoRYamamotoOTakanoMJ. Solid State Chem.199296721992JSSCh..96...72T10.1016/S0022-4596(05)80299-3
– reference: QianXGuNChengZYangXDongSElectronichim. Acta200146182910.1016/S0013-4686(00)00723-4
– reference: KhandySAGuptaDCJ. Phys. Chem. Solids201913510907910.1016/j.jpcs.2019.109079
– reference: SanderKLehmannUMuller-BuschbaumHKZeitschrift F Ur Anorganische und Allgemeine Chemie198148015310.1002/zaac.19814800919
– reference: MabroukiAMessaoudiOMansouriMElgharbiSBardaouiARSC Adv.202111378962021RSCAd..1137896M10.1039/D1RA07177G
– reference: MigahedMDBakrNAAbdel-HamidMIEl-HannafyOEl-NimrMJ. Appl. Polym. Sci.19965965510.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P
– reference: SrinivasamurthyKMManjunathaKSitaloEIIndian J. Phys.2020945932020InJPh..94..593S10.1007/s12648-019-01495-7
– reference: BarsoukovEMacdonaldJRImpedance Spectroscopy Theory, Experiment, and Applications20052New YorkWiley10.1002/0471716243
– reference: MessaoudiOMabroukiAMoufdaMAlfhaidLAzharyAElgharbiSJ. Mater. Sci. Mater. Electron.2021322248110.1007/s10854-021-06734-4
– reference: RietveldHMJ. Appl. Crystallogr.19692651969JApCr...2...65R10.1107/S0021889869006558
– reference: M P Harikrishnan, A C Bose, in AIP Conference Proceedings2115 1 (2019)
– reference: MoritomoYTomiokaYAsamitsuATokuraYPhys. Rev. B19955132971995PhRvB..51.3297M10.1103/PhysRevB.51.3297
– reference: DuttaTPPhys. B201040514752010PhyB..405.1475D10.1016/j.physb.2009.12.021
– reference: SengwaRJChoudharySIndian J. Phys.2014884612014InJPh..88..461S10.1007/s12648-014-0440-7
– reference: MostafaMFAbd-elalSTammamAKIndian J. Phys.201488492014InJPh..88...49M10.1007/s12648-013-0371-8
– reference: BhartiTPSolid Stat. Sci.2010124982010SSSci..12..498B10.1016/j.solidstatesciences.2009.12.014
– reference: HossainAAtiqueUllahAKMSarathiGuinPRoySJ. Sol. Gel. Sci. Technol.20209347910.1007/s10971-019-05054-8
– reference: SinghLWon KimISinBCWooSKHyunSHMandalKDLeeYPowder Technol.201528025610.1016/j.powtec.2015.04.025
– reference: NadeemMAkhtarMJKhanAYSolid State Commun.20051344312005SSCom.134..431N10.1016/j.ssc.2005.01.020
– reference: Y. Olofsson, J. Groot, T. Katrašnik, E G. Tavcar, in Electric Vehicle Conference (IEVC) IEEE International 1–6 (2014)
– reference: AhmedEAAAbou-DinaMSGhalebAFIndian J. Phys.20219511012021InJPh..95.1101A10.1007/s12648-020-01779-3
– reference: Bakr-MohamedMWangHFuessHPhys. D Appl. Phys.20104340910.1088/0022-3727/43/45/455409
– reference: BenamaraMZahmouliNKallekhABouzidiSEl MirLAlamriHRValenteMAJ. Magn. Magn. Mater.202356910.1016/j.jmmm.2023.170479
– reference: LilyKKumariKPrasadCChoudharyRNPJ. Alloys Compd.200845332510.1016/j.jallcom.2006.11.081
– reference: MahamoudHJ. Alloys Compd.2011509608310.1016/j.jallcom.2011.03.027
– reference: SugaharaTOhtakiMSoumaTJ. Ceram. Soc. Jpn.2008116127810.2109/jcersj2.116.1278
– reference: DasAKMeikapAKIndian J. Phys.2018926852018InJPh..92..685D10.1007/s12648-017-1148-2
– reference: Rodriguez-Carbajal J. Program FullProf. Laboratoire Léon Brillouin (CEACNRS)35 LLB-JRS (1998)
– reference: NgaiKLWrighGBJ. Non-Cryst. Solid199823581
– reference: KolodziejHSobczykLActa Phys. Polon A19713959
– reference: BarsoukovEKimDHLeeH-SLeeHYakovlevaMGaoYEngelJFJ. Solid State Ionics20031611910.1016/S0167-2738(03)00150-4
– reference: AlvarezFAlegriaAColmeneroJPhys Rev B1993471251993PhRvB..47..125A10.1103/PhysRevB.47.125
– reference: OmriDhahriEEs-SouniMCostaLCJ. Alloys Compd.201249717310.1016/j.jallcom.2012.04.094
– reference: KimJHJeongKWOhDGShinHJHongJMKimJSMoonJYLeeNChoiYJSci. Rep.202111237862021NatSR..1123786K10.1038/s41598-021-03330-8
– reference: SuJYangZZLuXMZhangJTGuLLuCJLiQCLiuJ-MZhuJSACS Appl. Mater. Interfaces201571326010.1021/acsami.5b00911
– reference: MabroukiAChadhaHMessaoudiOBenaliAMnasriTDhahriEValenteMAElgharbiSDhahriAManaiLInorg. Chem. Commun.202213910.1016/j.inoche.2022.109310
– reference: AlvarezFAlegriaAJ. Colmenero Phys. Rev. B19914473061991PhRvB..44.7306A10.1103/PhysRevB.44.7306
– reference: DehurySKKhatuaDAcharyPGRIndian J. Phys.2019938372019InJPh..93..837D10.1007/s12648-018-1344-8
– reference: Ramez AnipourFCowieBDerakhshanSGreedanJECranswickLMDJ. Solid State Chem.20091821532009JSSCh.182..153R10.1016/j.jssc.2008.10.010
– reference: RanjanRKumarRKumarNBeheraBChoudharyRNPJ. Alloys Compd.2011509638810.1016/j.jallcom.2011.03.003
– reference: LiZZhangWWangHYangBElectrochim. Acta201725856110.1016/j.electacta.2017.11.099
– volume: 32
  start-page: 22481
  year: 2021
  ident: 3039_CR5
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-021-06734-4
– volume: 96
  start-page: 72
  year: 1992
  ident: 3039_CR38
  publication-title: J. Solid State Chem.
  doi: 10.1016/S0022-4596(05)80299-3
– volume: 43
  start-page: 409
  year: 2010
  ident: 3039_CR55
  publication-title: Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/43/45/455409
– volume: 13
  start-page: 28632
  issue: 41
  year: 2023
  ident: 3039_CR2
  publication-title: RSC Adv.
  doi: 10.1039/D3RA06340B
– volume: 135
  start-page: 109079
  year: 2019
  ident: 3039_CR8
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2019.109079
– volume: 405
  start-page: 1475
  year: 2010
  ident: 3039_CR54
  publication-title: Phys. B
  doi: 10.1016/j.physb.2009.12.021
– volume: 2
  start-page: 65
  year: 1969
  ident: 3039_CR25
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889869006558
– volume: 46
  start-page: 1829
  year: 2001
  ident: 3039_CR37
  publication-title: Electronichim. Acta
  doi: 10.1016/S0013-4686(00)00723-4
– volume: 47
  start-page: 125
  year: 1993
  ident: 3039_CR48
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.125
– volume: 492
  start-page: 508
  year: 2010
  ident: 3039_CR35
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.11.152
– volume: 46
  start-page: 123
  year: 1982
  ident: 3039_CR49
  publication-title: Philos. Mag. B
  doi: 10.1080/13642818208246429
– volume: 161
  start-page: 19
  year: 2003
  ident: 3039_CR29
  publication-title: J. Solid State Ionics
  doi: 10.1016/S0167-2738(03)00150-4
– volume: 88
  start-page: 461
  year: 2014
  ident: 3039_CR20
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-014-0440-7
– ident: 3039_CR26
– volume: 116
  start-page: 7
  year: 2005
  ident: 3039_CR40
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2004.08.009
– ident: 3039_CR44
  doi: 10.1109/IEVC.2014.7056095
– volume: 149
  start-page: 67
  year: 2022
  ident: 3039_CR51
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(02)00170-4
– volume-title: Software Zview–v2.3d
  year: 2000
  ident: 3039_CR34
– volume: 13
  start-page: 24023
  year: 2023
  ident: 3039_CR1
  publication-title: Graça RSC Adv.
  doi: 10.1039/D3RA05038F
– volume: 88
  start-page: 49
  year: 2014
  ident: 3039_CR15
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-013-0371-8
– volume: 258
  start-page: 561
  year: 2017
  ident: 3039_CR22
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.099
– volume: 128
  start-page: 1
  year: 2022
  ident: 3039_CR4
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-021-05118-z
– volume: 44
  start-page: 7306
  year: 1991
  ident: 3039_CR47
  publication-title: J. Colmenero Phys. Rev. B
  doi: 10.1103/PhysRevB.44.7306
– volume: 39
  start-page: 59
  year: 1971
  ident: 3039_CR36
  publication-title: Acta Phys. Polon A
– volume: 25
  start-page: 3996
  year: 2020
  ident: 3039_CR9
  publication-title: Molecules
  doi: 10.3390/molecules25173996
– volume: 94
  start-page: 1917
  year: 2020
  ident: 3039_CR16
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-019-01655-9
– volume: 569
  year: 2023
  ident: 3039_CR3
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2023.170479
– volume: 134
  start-page: 431
  year: 2005
  ident: 3039_CR41
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2005.01.020
– volume: 94
  start-page: 593
  year: 2020
  ident: 3039_CR18
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-019-01495-7
– volume: 92
  start-page: 685
  year: 2018
  ident: 3039_CR21
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-017-1148-2
– volume: 95
  start-page: 1101
  year: 2021
  ident: 3039_CR17
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-020-01779-3
– volume: 280
  start-page: 256
  year: 2015
  ident: 3039_CR31
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.04.025
– volume: 11
  start-page: 23786
  year: 2021
  ident: 3039_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03330-8
– volume-title: Impedance Spectroscopy Theory, Experiment, and Applications
  year: 2005
  ident: 3039_CR30
  doi: 10.1002/0471716243
– volume: 51
  start-page: 3297
  year: 1995
  ident: 3039_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.3297
– volume: 509
  start-page: 6388
  year: 2011
  ident: 3039_CR57
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.03.003
– volume: 40
  start-page: 297
  year: 1999
  ident: 3039_CR43
  publication-title: Phys. Chem. Glasses
– volume: 201
  start-page: 588
  year: 2004
  ident: 3039_CR32
  publication-title: Status Solidi A
  doi: 10.1002/pssa.200306741
– volume: 453
  start-page: 325
  year: 2008
  ident: 3039_CR33
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.11.081
– volume: 139
  year: 2022
  ident: 3039_CR7
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2022.109310
– volume: 11
  start-page: 37896
  year: 2021
  ident: 3039_CR6
  publication-title: RSC Adv.
  doi: 10.1039/D1RA07177G
– volume: 235
  start-page: 81
  year: 1998
  ident: 3039_CR46
  publication-title: J. Non-Cryst. Solid
– volume: 59
  start-page: 655
  year: 1996
  ident: 3039_CR45
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19960124)59:4<655::AID-APP11>3.0.CO;2-P
– volume: 182
  start-page: 153
  year: 2009
  ident: 3039_CR28
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2008.10.010
– volume: 8
  start-page: 161
  year: 1967
  ident: 3039_CR52
  publication-title: Polymer
  doi: 10.1016/0032-3861(67)90021-3
– volume: 12
  start-page: 498
  year: 2010
  ident: 3039_CR53
  publication-title: Solid Stat. Sci.
  doi: 10.1016/j.solidstatesciences.2009.12.014
– volume: 36
  start-page: 129
  year: 1978
  ident: 3039_CR50
  publication-title: Philos. Mag. B
– volume: 93
  start-page: 479
  year: 2020
  ident: 3039_CR14
  publication-title: J. Sol. Gel. Sci. Technol.
  doi: 10.1007/s10971-019-05054-8
– volume: 116
  start-page: 1278
  year: 2008
  ident: 3039_CR11
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.116.1278
– ident: 3039_CR24
  doi: 10.1063/1.5112968
– volume: 497
  start-page: 173
  year: 2012
  ident: 3039_CR56
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.04.094
– volume: 93
  start-page: 837
  year: 2019
  ident: 3039_CR19
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-018-1344-8
– volume: 7
  start-page: 13260
  year: 2015
  ident: 3039_CR13
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00911
– volume: 480
  start-page: 153
  year: 1981
  ident: 3039_CR39
  publication-title: Zeitschrift F Ur Anorganische und Allgemeine Chemie
  doi: 10.1002/zaac.19814800919
– volume: 509
  start-page: 6083
  year: 2011
  ident: 3039_CR42
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.03.027
– volume: 44
  start-page: 8066
  year: 2005
  ident: 3039_CR10
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.44.8066
– volume: 7
  start-page: 920
  year: 2017
  ident: 3039_CR23
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.02.013
SSID ssj0069175
Score 2.3727472
Snippet This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO 3 , synthesized by the sol–gel...
This paper discusses the structural, microstructure and electrical properties of perovskite oxide lanthanum nickel LaNiO3, synthesized by the sol–gel reaction...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2745
SubjectTerms Astrophysics and Astroparticles
Bismuth
Dielectric relaxation
Diffraction patterns
Electrical properties
Equivalent circuits
Lanthanum
Lanthanum oxides
Niobium
Original Paper
Perovskites
Physics
Physics and Astronomy
Room temperature
Sol-gel processes
Thermal stability
Title Structural, electrical properties of bismuth and niobium-doped LaNiO3 perovskite obtained by sol–gel route for future electronic device applications
URI https://link.springer.com/article/10.1007/s12648-023-03039-6
https://www.proquest.com/docview/3068587297
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoqFIvCGirLi_NgVuxFCdxbB8XxIIALYd2JThF8SPtSpAgsovEjf-AxA_klzDOg9CKViKXKBrHB39jz4w9_oaQHcPR6DnDac5DQWPHQ6p1ZqgIuVTCZQ4fn20xTo4m8fE5P28vhVVdtnt3JFmv1P1lN5-MRdHGUFTMSNHkA1niGLt7vZ6Ew279TTAAqRMXlYgoi7lsr8q83cef5qj3Mf86Fq2tzWiFLLduIgwbXFfJgivWyMc6XdNUn8njj5r21VNm7EJTycYPNlz7rfUbz5EKZQ56Wl3NZ78hKywU01JP51fUYgMLp9l4ehaBJwm_rfz-LZTa7xGgSN8BquPT_cMvdwk35Rxl6NdCwz0CfdUcsM4vMvD6BPwLmYwOfu4f0bbCAjU49WZUBEYakRunrLA2yGwQ5dwpFuNXIhOlWSg0i5hF1BIdSgymbZBngWGxY7ll0VeyWJSF-0Yg0zLMhVTcqCxWGMZxbpLAWeYi7J5FA8K6gU5NSz_uq2Bcpj1xsgcnRXDSGpw0GZDvL_9cN-Qb_2292eGXthOxSjEiklxiBCEGZLfDtBf_u7f19zXfIJ9QFeMmkXeTLKIWuC10V2Z6mywNR3t7Y_8-vDg52K619Rmeb-fH
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i6r2UvpCXQqtD70VoziJY_uIELAt2-2hrERPUfxIuwISRHaRyon_UIkfyC9hnAdpUVuJ3CJPrNgee2bsz98AvDccjZ4znOY8FDR2PKRaZ4aKkEslXObw8WiLSTKaxp8O-WF7Kazq0O7dkWS9UveX3TwYi6KNoaiYkaLJQ1iKMQbnA1ja2vu2v9OtwAmGIDV0UYmIspjL9rLM32v50yD1Xuadg9Ha3uwuw7T70wZmcrS5mOtNc3GHxPG-TXkGT1sHlGw1GvMcHrjiBTyqgaCmeglXX2tCWU_GsUGaHDl-GMmp37Q_8-yrpMyJnlUni_kPkhWWFLNSzxYn1KKAJeNsMvsSEU8_fl75nWFSar_7gEX6J0FFv7789d0dk7NygWXoMZOG1YT0-XiIdX75Ir-frb-C6e7OwfaItrkbqMFJPaciMNKI3DhlhbVBZoMo506xGN8SmSjNQqFZxCzqQ6JDiWG6DfIsMCx2LLcsWoFBURbuNZBMyzAXUnGjslhhgMi5SQJnmYuwehYNgXUDmJqW2Nzn1zhOe0pm398p9nda93eaDOHD7TenDa3Hf6XXOr1I2ylepRhrSS4xNhFD2OiGuS_-d22r9xN_B49HB5_H6fjjZP8NPAnRqWrgwmswQI1w6-gUzfXbdg7cAF8BBLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELboIqpeELRUbIEyh96KRZzEsX1cASta0LZSuxK3KH4EVoJkxe5W6o3_gMQP5JcwzqOhFVQit8iPg7-xZ8ae-YaQT4aj0nOG05yHgsaOh1TrzFARcqmEyxx-PtpilByP469n_OxRFn8V7d4-SdY5DZ6lqZjvT22-3yW--cAsivqGopBGiiavyDIex8wHdY3DQXsWJ-iMVEGMSkSUxVw2aTNPz_G3aurszX-eSCvNM1wjq43JCIMa43Wy5Iq3ZKUK3TSzd-TuR0UB6-kz9qCuauMXHqb-mv3a86VCmYOezK4W8wvICgvFpNSTxRW12MHCaTaafIvAE4b_mvm7XCi1vy_AJv0bUDTvb27P3SVclwtsQxsXah4S6CrogHX-wIHHr-EbZDw8-nlwTJtqC9TgNpxTERhpRG6cssLaILNBlHOnWIx_iUyUZqHQuMQWEUx0KNGxtkGeBYbFjuWWRe9JrygLt0kg0zLMhVTcqCxW6NJxbpLAWeYinJ5FfcLahU5NQ0XuK2Jcph2JsgcnRXDSCpw06ZPPf8ZMayKO__bebvFLm005S9E7klyiNyH6ZK_FtGt-frYPL-u-S15_Pxymp19GJ1vkTYhWUB3fu016KBBuB62Yuf5YCeoDZRnr5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+electrical+properties+of+bismuth+and+niobium-doped+LaNiO3+perovskite+obtained+by+sol%E2%80%93gel+route+for+future+electronic+device+applications&rft.jtitle=Indian+journal+of+physics&rft.au=Nassar%2C+Kais+Iben&rft.au=Benamara%2C+M.&rft.au=Kechiche%2C+L.&rft.au=Teixeira%2C+S.+Soreto&rft.date=2024-07-01&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=98&rft.issue=8&rft.spage=2745&rft.epage=2753&rft_id=info:doi/10.1007%2Fs12648-023-03039-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12648_023_03039_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon