Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid
In this paper, a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid is investigated. By the virtue of the truncated Painlevé expansion, a set of the auto-Bäcklund transformations of that equation is worked out. Based on the auto-Bäcklund transformations with certai...
Saved in:
Published in | Nonlinear dynamics Vol. 111; no. 9; pp. 8647 - 8658 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid is investigated. By the virtue of the truncated Painlevé expansion, a set of the auto-Bäcklund transformations of that equation is worked out. Based on the auto-Bäcklund transformations with certain non-trivial seed solutions, one-, two-, three- and
N
-soliton solutions on the nonzero background of that equation are derived with
N
as a positive integer. According to those two-soliton solutions,
X
- and inelastic-type soliton solutions are obtained. Via the asymptotic analysis, influence of the coefficients for the above equation is discussed and the interactions between the solitons are also studied. Then, those solitons and interactions are shown graphically. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-023-08260-w |