Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means
In the article, we present the best possible parameters α 1 , α 2 , α 3 , α 4 , β 1 , β 2 , β 3 and β 4 on the interval (0, 1) such that the double inequalities G α 1 ( a , b ) < L M GA a , b < G β 1 ( a , b ) , G α 2 ( a , b ) < L M AG a , b < G β 2 ( a , b ) , Q α 3 ( a , b ) < L M...
Saved in:
Published in | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Vol. 116; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the article, we present the best possible parameters
α
1
,
α
2
,
α
3
,
α
4
,
β
1
,
β
2
,
β
3
and
β
4
on the interval (0, 1) such that the double inequalities
G
α
1
(
a
,
b
)
<
L
M
GA
a
,
b
<
G
β
1
(
a
,
b
)
,
G
α
2
(
a
,
b
)
<
L
M
AG
a
,
b
<
G
β
2
(
a
,
b
)
,
Q
α
3
(
a
,
b
)
<
L
M
AQ
a
,
b
<
Q
β
3
(
a
,
b
)
and
Q
α
4
(
a
,
b
)
<
L
M
QA
a
,
b
<
Q
β
4
(
a
,
b
)
hold for
a
,
b
>
0
with
a
≠
b
, where
G
p
(
a
,
b
)
and
Q
p
(
a
,
b
)
are respectively the one-parameter geometric and quadratic means,
L
M
GA
(
a
,
b
)
,
L
M
AG
(
a
,
b
)
,
L
M
AQ
(
a
,
b
)
and
L
M
QA
(
a
,
b
)
are four lemniscatic means of
a
and
b
. As applications, some new bounds for the arc lemniscate functions are given. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-021-01162-9 |