Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels
The current work develops a size-dependent model to provide a comprehensive analysis of static stability in doubly curved micro-panels resting on an elastic foundation. The doubly curved panel is made of advanced composites which reinforced with carbon-based materials. A seven-unknown shear deformat...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 21; no. 4; p. 139 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
25.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The current work develops a size-dependent model to provide a comprehensive analysis of static stability in doubly curved micro-panels resting on an elastic foundation. The doubly curved panel is made of advanced composites which reinforced with carbon-based materials. A seven-unknown shear deformation theory in curvilinear coordinate is combined with a non-classical approach to obtain a suitable model to get an accurate result for mechanical performance of micro-size shells. To perform this aim, a virtual work of Hamilton statement is developed and then an analytical technique on the basis of double-Fourier series is implemented for the microshell with fully simply supported conditions in edges. Results show that, CNTs reinforced composite curved shells exhibit a hardening response under buckling. It is also showed that the greatest critical buckling load of the microshell is observed for the shell with spherical panel followed by elliptical, cylindrical, and hyperbolic panels, respectively. Moreover, change of CNTs weight fraction can significantly alter the static stability characteristics of CNTs reinforced composite curved size-dependent shells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2083-3318 1644-9665 2083-3318 |
DOI: | 10.1007/s43452-021-00291-7 |