Novel Thin-Film Nanocomposite Forward Osmosis Membranes Modified with WS2/CuAl LDH Nanocomposite to Enhance Desalination and Anti-fouling Performance

Designing efficient membranes for desalination to help reduce the water shortage crisis has been the subject of various studies. In this study, first, CuAl LDH nanosheets were prepared and the surface of some thin-film composite (TFC) membranes was modified by them. Afterward, the novel heterostruct...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic and organometallic polymers and materials Vol. 33; no. 4; pp. 956 - 968
Main Authors Bagherzadeh, Mojtaba, Nikkhoo, Mohammad, Ahadian, Mohammad Mahdi, Amini, Mojtaba
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Designing efficient membranes for desalination to help reduce the water shortage crisis has been the subject of various studies. In this study, first, CuAl LDH nanosheets were prepared and the surface of some thin-film composite (TFC) membranes was modified by them. Afterward, the novel heterostructure nanocomposite consisting of CuAl LDH and WS 2 nanosheets was synthesized by hydrothermal method, and a new kind of thin-film nanocomposite (TFN) membranes were made using them. All the obtained membranes performance was studied in the forward osmosis (FO) process. The effects of the prepared compounds on the morphology, chemical structure, hydrophilicity, and topology of the polyamide (PA) active layer were evaluated by scanning electron microscopy (SEM), FT-IR spectroscopy, energy-dispersive X-ray (EDX), powder x-ray diffraction (XRD), water contact angle (WCA) goniometer and atomic force microscope (AFM) analysis. Finally, by comparing the results for both types of modified membranes, the membrane containing 0.025 wt% of the nanocomposite modifier showed the highest water flux (29.30 LMH) and selectivity (0.38 g/L) that was chosen as the optimal membrane. Also, the anti-fouling properties of this membrane were studied and the obtained results showed an increase in the fouling resistance compared to the membrane without filler. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1574-1443
1574-1451
DOI:10.1007/s10904-023-02547-6