Bourgain’s slicing problem and KLS isoperimetry up to polylog
We prove that Bourgain’s hyperplane conjecture and the Kannan-Lovász-Simonovits (KLS) isoperimetric conjecture hold true up to a factor that is polylogarithmic in the dimension.
Saved in:
Published in | Geometric and functional analysis Vol. 32; no. 5; pp. 1134 - 1159 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove that Bourgain’s hyperplane conjecture and the Kannan-Lovász-Simonovits (KLS) isoperimetric conjecture hold true up to a factor that is polylogarithmic in the dimension. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-022-00612-9 |