Haematopoietic stem cell transplantation: can our genes predict clinical outcome?
Haematopoietic stem cell transplantation (HSCT) is currently the only curative treatment for many patients with malignant and non-malignant haematological diseases. The success of HSCT is greatly reduced by the development of complications, which include graft-versus-host disease (GVHD), relapse and...
Saved in:
Published in | Expert reviews in molecular medicine Vol. 9; no. 29; pp. 1 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
02.11.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Haematopoietic stem cell transplantation (HSCT) is currently the only curative treatment for many patients with malignant and non-malignant haematological diseases. The success of HSCT is greatly reduced by the development of complications, which include graft-versus-host disease (GVHD), relapse and infection. Human leukocyte antigen (HLA) matching of patients and donors is essential, but does not completely prevent these complications; non-HLA genes may also have an impact upon transplant outcome. Polymorphisms within genes that are associated with an individual's capability to mount an immune response to alloantigen and infectious pathogens and/or response to drugs (pharmacogenomics) are all currently being studied for their association with HSCT outcome. This review summarises the potential role of non-HLA polymorphisms in predicting HSCT outcome, from studies on retrospective transplant cohorts of HLA-identical siblings and matched unrelated donors. The clinical relevance and interpretation of non-HLA genetics, and how these could be used alongside clinical risk factors in HSCT, are also discussed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Review-1 |
ISSN: | 1462-3994 1462-3994 |
DOI: | 10.1017/S1462399407000488 |