On the maximum principle and high-order, delay-free integrators for the viscous Cahn–Hilliard equation
The stabilization approach has been known to permit large time-step sizes while maintaining stability. However, it may “slow down the convergence rate” or cause “delayed convergence” if the time-step rescaling is not well resolved. By considering a fourth-order-in-space viscous Cahn–Hilliard (VCH) e...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The stabilization approach has been known to permit large time-step sizes while maintaining stability. However, it may “slow down the convergence rate” or cause “delayed convergence” if the time-step rescaling is not well resolved. By considering a fourth-order-in-space viscous Cahn–Hilliard (VCH) equation, we propose a class of up to the fourth-order single-step methods that are able to capture the correct physical behaviors with high-order accuracy and without time delay. By reformulating the VCH as a system consisting of a second-order diffusion term and a nonlinear term involving the operator
(
I
-
ν
Δ
)
-
1
, we first develop a general approach to estimate the maximum bound for the VCH equation equipped with either the Ginzburg–Landau or Flory–Huggins potential. Then, by taking advantage of new recursive approximations and adopting a time-step-dependent stabilization, we propose a class of stabilization Runge–Kutta methods that preserve the maximum principle for any time-step size without harming the convergence. Finally, we transform the stabilization method into a parametric Runge–Kutta formulation, estimate the rescaled time-step, and remove the time delay by means of a relaxation technique. When the stabilization parameter is chosen suitably, the proposed parametric relaxation integrators are rigorously proven to be mass-conserving, maximum-principle-preserving, and the convergence in the
l
∞
-norm is estimated with
p
th-order accuracy under mild regularity assumption. Numerical experiments on multi-dimensional benchmark problems are carried out to demonstrate the stability, accuracy, and structure-preserving properties of the proposed schemes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-024-10143-6 |