Pinhole-free Methylammonium Bismuth Iodide Perovskite Solar Cells Via All-Solution-Processed Multi-step Spin Coating

In a functional solar cell device, the morphology of a layer is a key to the performance of Bi-based perovskite solar cells (Bi-PeSCs). Especially, pinholes generated during spin coating degrade the solar cell performance. This paper proposes a method to prepare pinhole-free methylammonium bismuth i...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic materials Vol. 51; no. 2; pp. 577 - 585
Main Authors Achoi, M. F., Noman, M. A. A., Kato, S., Kishi, N., Soga, T.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a functional solar cell device, the morphology of a layer is a key to the performance of Bi-based perovskite solar cells (Bi-PeSCs). Especially, pinholes generated during spin coating degrade the solar cell performance. This paper proposes a method to prepare pinhole-free methylammonium bismuth iodide (MBI) film by multi-step spin coating, with the thickness optimized by changing the layer number between 1 and 12 layers. A strong absorption band is observed at around the wavelength of ~ 500 nm for all the MBI layers. The scanning electron microscopy (SEM) cross-section images visually depict that the MBI layers are free from pinholes at more than 6 layers, and we found that the maximum solar cell performance was reached at 8 layers of MBI with an open-circuit voltage of 0.18V, which is greater than using a single-spin coating. After that, it exhibited a decrease in its performance by increasing the number of MBI layers. The growth model and its mechanism for pinhole-free multi-MBI layers is also discussed. These results suggested an improvement of MBI layer morphology in the development of solar cell devices in the future. Graphical Abstract
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-021-09330-8