Polysorbate 80 coated chitosan nanoparticles for delivery of α-melanocyte stimulating hormone analog (NDP-MSH) to the brain reverse cognitive impairment related to neuroinflammation produced by a high-fat diet (HFD)
This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP),...
Saved in:
Published in | Neuropharmacology Vol. 253; p. 109969 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP), which formed a flattened layer on their surface. Nanoparticle preparation involved ionic gelation, followed by characterization using scanning electron microscopy (SEM) for morphology, dynamic light scattering (DLS) for colloidal properties, and ATR-FTIR spectroscopy for structure. Intraperitoneal injection of FITC-PS80/CS NPs and [NDP-MSH]-PS80/CS NP in rats demonstrated their ability to cross the blood-brain barrier, reach the brain, and accumulate in CA1 neurons of the dorsal hippocampus within 2 h. Two experimental models of neuroinflammation were employed with Male Wistar rats: a short-term model involving high-fat diet (HFD) consumption for 5 days followed by an immune stimulus with LPS, and a long-term model involving HFD consumption for 8 weeks. In both models, [NDP-MSH]-PS80/CS NPs could reverse the decreased expression of contextual fear memory induced by the diets. These findings suggest that [NDP-MSH]-PS80/CS NPs offer a promising strategy to overcome the limitations of NDP-MSH regarding pharmacokinetics and enzymatic stability. By facilitating NDP-MSH delivery to the hippocampus, these nanoparticles can potentially mitigate the cognitive impairments associated with HFD consumption and neuroinflammation.
[Display omitted]
•A specific brain delivery carrier [NDP-MSH]-PS80/CS NPs was successfully developed.•The [NDP-MSH]-PS80/CS NPs effectively transported NDP-MSH to the hippocampus.•The [NDP-MSH]-PS80/CS NPs reduced contextual fear memory expression in animals fed HFD.•The [NDP-MSH]-PS80/CS NPs attenuated the cognitive damage associated with HFD diet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0028-3908 1873-7064 |
DOI: | 10.1016/j.neuropharm.2024.109969 |