A nonlinear vibration isolator supported on a flexible plate: analysis and experiment
To address low-frequency vibration isolation, an issue that engineers often face, this paper first studies the nonlinear energy transfer of a flexible plate, with arbitrary boundary, with the coupling of high-static-low-dynamic-stiffness (HSLDS) isolator. The nonlinear coupled dynamic equation was d...
Saved in:
Published in | Nonlinear dynamics Vol. 108; no. 2; pp. 941 - 958 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-090X 1573-269X |
DOI | 10.1007/s11071-022-07243-7 |
Cover
Loading…
Summary: | To address low-frequency vibration isolation, an issue that engineers often face, this paper first studies the nonlinear energy transfer of a flexible plate, with arbitrary boundary, with the coupling of high-static-low-dynamic-stiffness (HSLDS) isolator. The nonlinear coupled dynamic equation was derived via the Lagrange method, and the improved Fourier series and Rayleigh–Ritz methods provide modal coefficients of the arbitrary boundary flexible plate with nonlinear vibration isolators. The Galerkin and harmonic balance methods approximate the frequency response functions of power flow for the coupled system. The numerical method, via direct integration of the dynamic equation, validates the analytical results of the frequency response functions. In addition, the finite element simulation, used here, validates the analytical results of the mode shapes for flexible plate. The experiment is carried out to validate the isolation performance of the nonlinear vibrator supported on a flexible plate. On these bases, increasing damping and controlling HSLDS can improve the low-frequency isolation efficiency, and nonlinear jumping-phenomena could disappear over a low-frequency range (either frequency overlap or frequency jump). Hence, a properly configured flexible plate could improve the bearing capacity and low-frequency isolation efficiency while avoiding frequency mistune. An explanation for these is offered in the article. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-022-07243-7 |