Project portfolio selection and scheduling under a fuzzy environment

The problem of integrated project portfolio selection and scheduling (PPSS) is among the most important and highly pursed subjects in project management. In this study, a mathematical model and algorithm are designed specifically to assist decision makers decide which projects are to be chosen and w...

Full description

Saved in:
Bibliographic Details
Published inMemetic computing Vol. 11; no. 4; pp. 391 - 406
Main Authors Zhang, Xiaoxiong, Hipel, Keith W., Tan, Yuejin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-9284
1865-9292
DOI10.1007/s12293-019-00282-5

Cover

More Information
Summary:The problem of integrated project portfolio selection and scheduling (PPSS) is among the most important and highly pursed subjects in project management. In this study, a mathematical model and algorithm are designed specifically to assist decision makers decide which projects are to be chosen and when these projects are to be undertaken. More specifically, the PPSS problem is first formulated as a nonlinear multi-objective model with simultaneous consideration of benefit and risk factors. Due to the complexity and uncertainty involved in most real life situations, fuzzy numbers are incorporated into the model, which can provide decision makers with more flexibility. Then, an inverse modeling based multi-objective evolutionary algorithm using a Gaussian Process is presented to obtain the Pareto set. Finally, an illustrative example is used to demonstrate the high efficacy of the foregoing approach, which can provide decision makers with valuable insights into the PPSS process. The proposed algorithm is found to be more effective compared with two other popular algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1865-9284
1865-9292
DOI:10.1007/s12293-019-00282-5