A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images

The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 32; no. 7; pp. 1302 - 1315
Main Authors Wenjia Bai, Wenzhe Shi, O'Regan, D. P., Tong Tong, Haiyan Wang, Jamil-Copley, S., Peters, N. S., Rueckert, D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis.
AbstractList The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis.The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis.
The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis.
Author Jamil-Copley, S.
Peters, N. S.
Wenjia Bai
O'Regan, D. P.
Tong Tong
Rueckert, D.
Wenzhe Shi
Haiyan Wang
Author_xml – sequence: 1
  surname: Wenjia Bai
  fullname: Wenjia Bai
  organization: Dept. of Comput., Imperial Coll. London, London, UK
– sequence: 2
  surname: Wenzhe Shi
  fullname: Wenzhe Shi
  organization: Dept. of Comput., Imperial Coll. London, London, UK
– sequence: 3
  givenname: D. P.
  surname: O'Regan
  fullname: O'Regan, D. P.
  organization: MRC Clinical Sci. Centre, Imperial Coll. London, London, UK
– sequence: 4
  surname: Tong Tong
  fullname: Tong Tong
  organization: Dept. of Comput., Imperial Coll. London, London, UK
– sequence: 5
  surname: Haiyan Wang
  fullname: Haiyan Wang
  organization: Dept. of Comput., Imperial Coll. London, London, UK
– sequence: 6
  givenname: S.
  surname: Jamil-Copley
  fullname: Jamil-Copley, S.
  organization: Cardiology Dept., Imperial Coll. Healthcare NHS Trust, London, UK
– sequence: 7
  givenname: N. S.
  surname: Peters
  fullname: Peters, N. S.
  email: n.peters@imperial.ac.uk
  organization: Cardiology Dept., Imperial Coll. Healthcare NHS Trust, London, UK
– sequence: 8
  givenname: D.
  surname: Rueckert
  fullname: Rueckert, D.
  organization: Dept. of Comput., Imperial Coll. London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23568495$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-P0zAQxS20iO0u3JGQkI9cUvwnTmJupWKXSq1YlUVws2xn0jVK4mI7B74Cn3pdpcuBA6fRzPzeO7x3hS5GPwJCrylZUkrk-_vdZskI5UvGRCUZe4YWVIimYKL8cYEWhNVNQUjFLtFVjD8JoaUg8gW6ZFxUTSnFAv1Z4bvgjTaudzE5i-90sg_FRx2hxVttoMc3U3R-xDvf5qXzAe-mPrlilXod8Vc4DDAmnU7Id5ce8B4O2SnMlz10boQT8QGvjsfe2fmePF7r0Dpt8W6PN4M-QHyJnne6j_DqPK_Rt5tP9-vPxfbL7Wa92haWU5mKUoO1umW6AlHqWrJONgaIFLbrGs6MZIbbsiNNSxrKWsKsyU-oDOU156Lm1-jd7HsM_tcEManBRQt9r0fwU1SZY3WOTjQZfXtGJzNAq47BDTr8Vk_5ZaCaARt8jAE6Zd0cRk7A9YoSdSpK5aLUqSh1LioLyT_CJ-__SN7MEgcAf_GqlGVV1vwRHO6eSQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_neucom_2019_04_052
crossref_primary_10_1186_1532_429X_18_S1_P351
crossref_primary_10_1016_j_media_2020_101723
crossref_primary_10_1016_j_ejmp_2018_09_011
crossref_primary_10_1186_s12968_019_0523_x
crossref_primary_10_1007_s13239_020_00494_8
crossref_primary_10_1109_TMI_2016_2597270
crossref_primary_10_1002_mp_12511
crossref_primary_10_1016_j_neucom_2020_02_069
crossref_primary_10_1016_j_patrec_2018_07_031
crossref_primary_10_1007_s11554_016_0568_0
crossref_primary_10_1016_j_media_2018_07_009
crossref_primary_10_1016_j_nicl_2015_05_001
crossref_primary_10_1109_ACCESS_2019_2943485
crossref_primary_10_1186_s12918_018_0572_z
crossref_primary_10_1166_jmihi_2022_3927
crossref_primary_10_2967_jnumed_115_156299
crossref_primary_10_1016_j_jbi_2023_104366
crossref_primary_10_1002_mp_15613
crossref_primary_10_1186_s12938_016_0153_6
crossref_primary_10_3390_fluids7060201
crossref_primary_10_1016_j_media_2015_01_003
crossref_primary_10_1016_j_media_2018_05_006
crossref_primary_10_1109_TBME_2018_2856501
crossref_primary_10_1016_j_jcmg_2015_08_007
crossref_primary_10_1109_TMI_2017_2665165
crossref_primary_10_1016_j_dsp_2023_104020
crossref_primary_10_1109_TBME_2019_2906667
crossref_primary_10_1016_j_asoc_2023_110060
crossref_primary_10_1016_j_bspc_2020_102347
crossref_primary_10_1088_1361_6560_aa66bf
crossref_primary_10_1118_1_4966133
crossref_primary_10_1016_j_media_2016_02_006
crossref_primary_10_1109_TMI_2014_2313000
crossref_primary_10_7498_aps_68_20190582
crossref_primary_10_1002_mp_12492
crossref_primary_10_1111_anae_14494
crossref_primary_10_1016_j_mlwa_2022_100294
crossref_primary_10_1016_j_mri_2017_01_011
crossref_primary_10_1093_eurheartj_ehac758
crossref_primary_10_1016_j_media_2020_101894
crossref_primary_10_1088_1361_6560_ac0bd3
crossref_primary_10_1118_1_4947126
crossref_primary_10_1016_j_media_2018_08_003
crossref_primary_10_1145_3517190
crossref_primary_10_1109_ACCESS_2018_2882848
crossref_primary_10_1016_j_neuroimage_2018_04_039
crossref_primary_10_1002_aisy_201900048
crossref_primary_10_1016_j_compmedimag_2021_101971
crossref_primary_10_1109_TMI_2015_2442753
crossref_primary_10_1016_j_artmed_2019_03_004
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_1007_s10916_019_1385_3
crossref_primary_10_3103_S1060992X24700498
crossref_primary_10_2214_AJR_19_21927
crossref_primary_10_1016_j_media_2014_06_005
crossref_primary_10_1016_j_media_2016_06_009
crossref_primary_10_1186_s12911_017_0560_z
crossref_primary_10_1109_TMI_2024_3514869
crossref_primary_10_1109_TIP_2019_2952079
crossref_primary_10_1109_JBHI_2018_2834551
crossref_primary_10_1002_mp_13245
crossref_primary_10_1002_jmri_24726
crossref_primary_10_1134_S0361768816060050
crossref_primary_10_1088_1361_6560_aa6520
crossref_primary_10_1016_j_compmedimag_2021_101982
crossref_primary_10_1109_TMI_2015_2470075
crossref_primary_10_1109_TPAMI_2017_2711020
crossref_primary_10_1118_1_4868455
crossref_primary_10_1016_j_media_2023_102869
crossref_primary_10_1109_TMI_2015_2508150
crossref_primary_10_1109_TMI_2017_2726112
crossref_primary_10_1109_ACCESS_2019_2945586
crossref_primary_10_3310_KPWQ4208
crossref_primary_10_1007_s11517_017_1732_9
crossref_primary_10_1109_JBHI_2022_3149114
crossref_primary_10_1016_j_media_2015_06_012
crossref_primary_10_1016_j_media_2016_04_009
crossref_primary_10_1007_s12021_019_09448_5
crossref_primary_10_1016_j_media_2015_08_009
crossref_primary_10_1016_j_patcog_2016_09_026
crossref_primary_10_1016_j_neucom_2024_129326
crossref_primary_10_1002_mrm_26631
crossref_primary_10_1118_1_4921366
crossref_primary_10_1016_j_media_2019_101591
crossref_primary_10_1016_j_media_2014_10_004
crossref_primary_10_1109_TMI_2017_2743464
crossref_primary_10_1016_j_scs_2020_102589
crossref_primary_10_1049_iet_ipr_2015_0408
crossref_primary_10_1016_j_mri_2021_02_003
crossref_primary_10_3390_brainsci10120974
crossref_primary_10_1109_TMI_2019_2962792
crossref_primary_10_1186_1532_429X_16_16
crossref_primary_10_3389_fradi_2023_1144004
crossref_primary_10_1016_j_neuroimage_2019_03_041
crossref_primary_10_1049_iet_ipr_2016_0988
crossref_primary_10_1155_2020_5047976
crossref_primary_10_1016_j_neuroimage_2018_04_001
crossref_primary_10_1080_21681163_2022_2125697
crossref_primary_10_1109_TMI_2023_3331982
crossref_primary_10_1109_TIM_2020_3003360
crossref_primary_10_1016_j_mri_2015_12_027
crossref_primary_10_1016_j_neuroimage_2015_12_009
crossref_primary_10_1109_TMI_2015_2453551
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_1088_2057_1976_abce16
crossref_primary_10_1002_ima_22301
crossref_primary_10_32604_csse_2022_022314
crossref_primary_10_1049_joe_2016_0288
crossref_primary_10_1109_TMI_2019_2905990
crossref_primary_10_1118_1_4945021
crossref_primary_10_3389_fonc_2021_674579
crossref_primary_10_1002_mp_15308
crossref_primary_10_1007_s10916_015_0329_9
crossref_primary_10_1007_s11517_018_1808_1
crossref_primary_10_1016_j_media_2014_09_005
crossref_primary_10_1109_TMI_2016_2589760
crossref_primary_10_1109_TMI_2019_2894322
crossref_primary_10_1007_s10334_015_0521_4
crossref_primary_10_1016_j_mri_2021_10_005
Cites_doi 10.1016/S0002-9149(02)02381-0
10.1109/42.836373
10.1007/978-3-642-23626-6_79
10.1109/TMI.2007.906087
10.1016/j.media.2005.03.004
10.1109/TPAMI.2012.143
10.1109/TMI.2008.2011480
10.1109/TMI.2010.2047112
10.1016/j.neuroimage.2010.09.018
10.1016/j.acra.2012.03.022
10.1016/j.neuroimage.2005.02.018
10.1109/TMI.2009.2030799
10.1016/j.neuroimage.2011.09.012
10.1016/j.neuroimage.2009.02.018
10.1007/978-3-642-14366-3_10
10.1016/j.neuroimage.2011.09.002
10.1007/978-3-642-33530-3_8
10.1109/42.796284
10.1016/j.neuroimage.2011.01.006
10.1016/j.imavis.2010.01.001
10.1016/j.neuroimage.2006.05.061
10.1109/TMI.2002.804426
10.1016/j.media.2012.10.002
10.1109/TMI.2012.2236651
10.1016/j.media.2004.06.005
10.1007/s11263-009-0272-7
10.1109/TMI.2007.904681
10.1109/TMI.2010.2050897
10.1007/978-3-642-33530-3_10
10.1109/TMI.2009.2014372
10.1007/978-3-642-33454-2_53
10.1016/j.media.2009.10.001
10.1109/TMI.2011.2156806
10.1007/3-540-45631-7_39
10.1109/TMI.2009.2031063
10.1109/TMI.2003.815867
10.1002/hbm.22183
10.1109/TMI.2004.830803
10.1016/j.neuroimage.2009.10.026
10.1002/mrm.1910340618
10.1109/CVPR.2011.5995382
10.1109/TMI.2004.828354
10.1109/TMI.2010.2057442
10.1016/j.neuroimage.2004.10.017
10.1007/s11263-007-0052-1
10.1016/j.media.2010.12.004
10.1007/11784012_17
10.1016/j.neuroimage.2003.11.010
10.1109/ISBI.2012.6235691
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2013.2256922
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1315
ExternalDocumentID 23568495
10_1109_TMI_2013_2256922
6494647
Genre orig-research
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: FS/11/22/28745
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c319t-4aeccad2a6e54a792f98be095cff832b92b3c4f08d0812d02cb095e6b13733573
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 01:03:39 EDT 2025
Mon Jul 21 06:05:02 EDT 2025
Tue Jul 01 03:15:52 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Tue Aug 26 16:42:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4aeccad2a6e54a792f98be095cff832b92b3c4f08d0812d02cb095e6b13733573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23568495
PQID 1372702758
PQPubID 23479
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TMI_2013_2256922
crossref_primary_10_1109_TMI_2013_2256922
pubmed_primary_23568495
proquest_miscellaneous_1372702758
ieee_primary_6494647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References fonov (ref39) 2012
ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
zhu (ref7) 2010; 29
suinesiaputra (ref10) 2011
ref52
ref55
ref54
risholm (ref46) 2010
ref17
van rikxoort (ref19) 2010; 14
ref16
radau (ref9) 2009
ref18
ref50
petitjean (ref11) 2012
ref45
ref48
risholm (ref47) 2010
ref42
ref41
ref44
ref43
ref49
ref8
tong (ref32) 2012
coup (ref25) 2010
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref1
d'agostino (ref53) 2006
ref24
ref23
ref26
ref20
wolz (ref38) 0
ref22
ref21
ref28
ref27
ref29
jolly (ref2) 2009
lynch (ref4) 2008; 27
chen (ref51) 2005
References_xml – start-page: 10
  year: 0
  ident: ref38
  publication-title: MICCAI 2012
– ident: ref57
  doi: 10.1016/S0002-9149(02)02381-0
– ident: ref58
  doi: 10.1109/42.836373
– ident: ref36
  doi: 10.1007/978-3-642-23626-6_79
– ident: ref29
  doi: 10.1109/TMI.2007.906087
– ident: ref52
  doi: 10.1016/j.media.2005.03.004
– ident: ref35
  doi: 10.1109/TPAMI.2012.143
– ident: ref21
  doi: 10.1109/TMI.2008.2011480
– ident: ref8
  doi: 10.1109/TMI.2010.2047112
– ident: ref26
  doi: 10.1016/j.neuroimage.2010.09.018
– ident: ref12
  doi: 10.1016/j.acra.2012.03.022
– start-page: 88
  year: 2011
  ident: ref10
  article-title: Left ventricular segmentation challenge from cardiac MRI: A collation study
  publication-title: MICCAI Cardiac MR LV Segmentation Challenge
– ident: ref50
  doi: 10.1016/j.neuroimage.2005.02.018
– year: 2012
  ident: ref11
  article-title: Right ventricle segmentation in cardiac MRI: A MICCAI12 challenge
  publication-title: MICCAI 2012 Right Ventricle Segmentation Challenge Workshop
– ident: ref6
  doi: 10.1109/TMI.2009.2030799
– ident: ref40
  doi: 10.1016/j.neuroimage.2011.09.012
– ident: ref17
  doi: 10.1016/j.neuroimage.2009.02.018
– start-page: 126
  year: 2005
  ident: ref51
  publication-title: Information Processing in Medical Imaging
– start-page: 104
  year: 2010
  ident: ref46
  article-title: Bayesian estimation of deformation and elastic parameters in non-rigid registration
  publication-title: Biomed Image Registrat
  doi: 10.1007/978-3-642-14366-3_10
– ident: ref48
  doi: 10.1016/j.neuroimage.2011.09.002
– ident: ref33
  doi: 10.1007/978-3-642-33530-3_8
– ident: ref54
  doi: 10.1109/42.796284
– ident: ref34
  doi: 10.1016/j.neuroimage.2011.01.006
– ident: ref1
  doi: 10.1016/j.imavis.2010.01.001
– ident: ref13
  doi: 10.1016/j.neuroimage.2006.05.061
– ident: ref56
  doi: 10.1109/TMI.2002.804426
– ident: ref44
  doi: 10.1016/j.media.2012.10.002
– ident: ref49
  doi: 10.1109/TMI.2012.2236651
– start-page: 129
  year: 2010
  ident: ref25
  publication-title: Medical Image Computing and Computer Assisted Intervention
– ident: ref3
  doi: 10.1016/j.media.2004.06.005
– ident: ref27
  doi: 10.1007/s11263-009-0272-7
– volume: 27
  start-page: 195
  year: 2008
  ident: ref4
  article-title: Segmentation of the left ventricle of the heart in 3-<formula formulatype="inline"><tex Notation="TeX">${\rm D}+{\rm t}$</tex></formula> MRI data using an optimized nonrigid temporal model
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2007.904681
– year: 2009
  ident: ref9
  article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI
  publication-title: MICCAI Workshop Cardiac MR LV Seg Chall
– year: 2009
  ident: ref2
  article-title: Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces
  publication-title: The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge
– start-page: 554
  year: 2010
  ident: ref47
  article-title: Summarizing and visualizing uncertainty in non-rigid registration
  publication-title: Proc Med Image Comput Computer-Assist Intervent
– ident: ref23
  doi: 10.1109/TMI.2010.2050897
– start-page: 63
  year: 2012
  ident: ref39
  article-title: Multi-atlas labeling with population-specific template and non-local patchbased label fusion
  publication-title: Proc MICCAI 2012 Grand Challenge Workshop Multi-Atlas Label
– ident: ref42
  doi: 10.1007/978-3-642-33530-3_10
– ident: ref20
  doi: 10.1109/TMI.2009.2014372
– year: 2012
  ident: ref32
  article-title: Segmentation of brain MR images via sparse patch representation
  publication-title: MICCAI Workshop Sparsity Techniques in Medical Imaging
– ident: ref43
  doi: 10.1007/978-3-642-33454-2_53
– volume: 14
  start-page: 39
  year: 2010
  ident: ref19
  article-title: Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2009.10.001
– ident: ref30
  doi: 10.1109/TMI.2011.2156806
– ident: ref59
  doi: 10.1007/3-540-45631-7_39
– volume: 29
  start-page: 669
  year: 2010
  ident: ref7
  article-title: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2009.2031063
– ident: ref55
  doi: 10.1109/TMI.2003.815867
– ident: ref37
  doi: 10.1002/hbm.22183
– ident: ref14
  doi: 10.1109/TMI.2004.830803
– ident: ref18
  doi: 10.1016/j.neuroimage.2009.10.026
– ident: ref45
  doi: 10.1002/mrm.1910340618
– ident: ref31
  doi: 10.1109/CVPR.2011.5995382
– ident: ref24
  doi: 10.1109/TMI.2004.828354
– ident: ref22
  doi: 10.1109/TMI.2010.2057442
– ident: ref16
  doi: 10.1016/j.neuroimage.2004.10.017
– ident: ref28
  doi: 10.1007/s11263-007-0052-1
– ident: ref5
  doi: 10.1016/j.media.2010.12.004
– start-page: 136
  year: 2006
  ident: ref53
  publication-title: 2nd Int Workshop Biomedical Image Registration
  doi: 10.1007/11784012_17
– ident: ref15
  doi: 10.1016/j.neuroimage.2003.11.010
– ident: ref41
  doi: 10.1109/ISBI.2012.6235691
SSID ssj0014509
Score 2.514617
Snippet The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1302
SubjectTerms Accuracy
Algorithms
Bayes methods
Bayes Theorem
Gaussian distribution
Heart - anatomy & histology
Heart Ventricles - anatomy & histology
Humans
Image Processing, Computer-Assisted - methods
Image registration
Image segmentation
Magnetic Resonance Imaging - methods
multi-atlas segmentation
patch-based segmentation
Probabilistic logic
Vectors
Title A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images
URI https://ieeexplore.ieee.org/document/6494647
https://www.ncbi.nlm.nih.gov/pubmed/23568495
https://www.proquest.com/docview/1372702758
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LC8ZiQsS2U1tx1lzWypWLSKoKq3oLXL8aBHbLGqTCz-BX82M86BCgDglUZyHNWN7xjPzfQAvc0MQIE4kpsJBLqkAxCinEmUE9zYLOnVUnFx8VPsn8v1pdroBr8daGO99TD7zUzqNsXy3ti1tlc2U1FLJfBM20XHrarXGiIHMunQOToixqeJDSDLVs-PigHK4xBR1V2lOBDZcZGouiVTi2moU6VX-bmnGFWd5B4rhX7tEk6_Ttqmm9vtvMI7_25m7cLs3Pdmi05V7sOHrbbh1DZBwG24Ufah9B34s2OElDnZKniUsZ3aIk_Z58hZXPcc-mMqv2LKlrTZGdGorhsYvi9W8yaJBi5x98mcXfV1TzT5_ac7ZkT8bUXrxIuBnqMUbtvgVRGfNmu1FpbWsOGIHFzjdXd2Hk-W74739pCduSCyO6CaRhhTDcaN8Jk2uedDzyqMxZ0PAGaTSvBJWhnTu0CDhLuW2wpteVbsiFyLLxQPYqte1f0Ql5TY44VyWG2IgF3Mj7K7Pg8YDuqZhArNBgKXtUc2JXGNVRu8m1SVKvyTpl730J_BqfOJbh-jxj7Y7JLixXS-zCbwYdKTE0UghFlP7dXtVYgeowA-dsAk87JRnfHjQucd_fukTuMkj1QalAj-Freay9c_Q4Gmq51HTfwK5ffoy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VInE8cLQFltNIvCCR3dR2nA1vS8VqFzZVVbaib5GvtFW3WdQmL_wEfjUzuagQIJ6SKM5hzTf22DPfDMCbWFMKECcCbVDJJRFAtHIqUFpwb6M8CR2Rk9N9NTuSn46j4w1413NhvPd18Jkf0mnty3drW9FW2UjJRCoZ34CbOO9HvGFr9T4DGTUBHZxyxoaKd07JMBkt0zlFcYkholclnErYcBGpsaSyEtfmo7rAyt9tzXrOmd6HtPvbJtTkfFiVZmi__5bI8X-78wDutcYnmzRoeQgbvtiCu9dSEm7BrbR1tm_Djwk7uER1p_BZyubMDnDYPg0-4Lzn2EIbv2LTijbbGBVUWzE0f1nN5w0mJdrk7Is_uWiZTQX7elaeskN_0ufpxYscP0Mt3rPJLzc6K9dsr4atZekhm1_ggHe1A0fTj8u9WdCWbggs6nQZSE3QcFwrH0kdJzxPxsajOWfzHMcQk3AjrMzDsUOThLuQW4M3vTK7IhYiisUj2CzWhX9CpHKbO-FcFGuqQS7GWthdH-cJHnBxmg9g1Akws21ecyqvscrq9U2YZCj9jKSftdIfwNv-iW9NTo9_tN0mwfXtWpkN4HWHkQz1kZwsuvDr6irDDhDFD5dhA3jcgKd_uMPc0z-_9BXcni3TRbaY739-Bnd4XXiDAoOfw2Z5WfkXaP6U5mWN-p_tuf18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Probabilistic+Patch-Based+Label+Fusion+Model+for+Multi-Atlas+Segmentation+With+Registration+Refinement%3A+Application+to+Cardiac+MR+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wenjia+Bai&rft.au=Wenzhe+Shi&rft.au=O%27Regan%2C+D.+P.&rft.au=Tong+Tong&rft.date=2013-07-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=32&rft.issue=7&rft.spage=1302&rft.epage=1315&rft_id=info:doi/10.1109%2FTMI.2013.2256922&rft_id=info%3Apmid%2F23568495&rft.externalDocID=6494647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon