A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images
The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of th...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 32; no. 7; pp. 1302 - 1315 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis. |
---|---|
AbstractList | The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis.The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis. The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis. |
Author | Jamil-Copley, S. Peters, N. S. Wenjia Bai O'Regan, D. P. Tong Tong Rueckert, D. Wenzhe Shi Haiyan Wang |
Author_xml | – sequence: 1 surname: Wenjia Bai fullname: Wenjia Bai organization: Dept. of Comput., Imperial Coll. London, London, UK – sequence: 2 surname: Wenzhe Shi fullname: Wenzhe Shi organization: Dept. of Comput., Imperial Coll. London, London, UK – sequence: 3 givenname: D. P. surname: O'Regan fullname: O'Regan, D. P. organization: MRC Clinical Sci. Centre, Imperial Coll. London, London, UK – sequence: 4 surname: Tong Tong fullname: Tong Tong organization: Dept. of Comput., Imperial Coll. London, London, UK – sequence: 5 surname: Haiyan Wang fullname: Haiyan Wang organization: Dept. of Comput., Imperial Coll. London, London, UK – sequence: 6 givenname: S. surname: Jamil-Copley fullname: Jamil-Copley, S. organization: Cardiology Dept., Imperial Coll. Healthcare NHS Trust, London, UK – sequence: 7 givenname: N. S. surname: Peters fullname: Peters, N. S. email: n.peters@imperial.ac.uk organization: Cardiology Dept., Imperial Coll. Healthcare NHS Trust, London, UK – sequence: 8 givenname: D. surname: Rueckert fullname: Rueckert, D. organization: Dept. of Comput., Imperial Coll. London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23568495$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU-P0zAQxS20iO0u3JGQkI9cUvwnTmJupWKXSq1YlUVws2xn0jVK4mI7B74Cn3pdpcuBA6fRzPzeO7x3hS5GPwJCrylZUkrk-_vdZskI5UvGRCUZe4YWVIimYKL8cYEWhNVNQUjFLtFVjD8JoaUg8gW6ZFxUTSnFAv1Z4bvgjTaudzE5i-90sg_FRx2hxVttoMc3U3R-xDvf5qXzAe-mPrlilXod8Vc4DDAmnU7Id5ce8B4O2SnMlz10boQT8QGvjsfe2fmePF7r0Dpt8W6PN4M-QHyJnne6j_DqPK_Rt5tP9-vPxfbL7Wa92haWU5mKUoO1umW6AlHqWrJONgaIFLbrGs6MZIbbsiNNSxrKWsKsyU-oDOU156Lm1-jd7HsM_tcEManBRQt9r0fwU1SZY3WOTjQZfXtGJzNAq47BDTr8Vk_5ZaCaARt8jAE6Zd0cRk7A9YoSdSpK5aLUqSh1LioLyT_CJ-__SN7MEgcAf_GqlGVV1vwRHO6eSQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_neucom_2019_04_052 crossref_primary_10_1186_1532_429X_18_S1_P351 crossref_primary_10_1016_j_media_2020_101723 crossref_primary_10_1016_j_ejmp_2018_09_011 crossref_primary_10_1186_s12968_019_0523_x crossref_primary_10_1007_s13239_020_00494_8 crossref_primary_10_1109_TMI_2016_2597270 crossref_primary_10_1002_mp_12511 crossref_primary_10_1016_j_neucom_2020_02_069 crossref_primary_10_1016_j_patrec_2018_07_031 crossref_primary_10_1007_s11554_016_0568_0 crossref_primary_10_1016_j_media_2018_07_009 crossref_primary_10_1016_j_nicl_2015_05_001 crossref_primary_10_1109_ACCESS_2019_2943485 crossref_primary_10_1186_s12918_018_0572_z crossref_primary_10_1166_jmihi_2022_3927 crossref_primary_10_2967_jnumed_115_156299 crossref_primary_10_1016_j_jbi_2023_104366 crossref_primary_10_1002_mp_15613 crossref_primary_10_1186_s12938_016_0153_6 crossref_primary_10_3390_fluids7060201 crossref_primary_10_1016_j_media_2015_01_003 crossref_primary_10_1016_j_media_2018_05_006 crossref_primary_10_1109_TBME_2018_2856501 crossref_primary_10_1016_j_jcmg_2015_08_007 crossref_primary_10_1109_TMI_2017_2665165 crossref_primary_10_1016_j_dsp_2023_104020 crossref_primary_10_1109_TBME_2019_2906667 crossref_primary_10_1016_j_asoc_2023_110060 crossref_primary_10_1016_j_bspc_2020_102347 crossref_primary_10_1088_1361_6560_aa66bf crossref_primary_10_1118_1_4966133 crossref_primary_10_1016_j_media_2016_02_006 crossref_primary_10_1109_TMI_2014_2313000 crossref_primary_10_7498_aps_68_20190582 crossref_primary_10_1002_mp_12492 crossref_primary_10_1111_anae_14494 crossref_primary_10_1016_j_mlwa_2022_100294 crossref_primary_10_1016_j_mri_2017_01_011 crossref_primary_10_1093_eurheartj_ehac758 crossref_primary_10_1016_j_media_2020_101894 crossref_primary_10_1088_1361_6560_ac0bd3 crossref_primary_10_1118_1_4947126 crossref_primary_10_1016_j_media_2018_08_003 crossref_primary_10_1145_3517190 crossref_primary_10_1109_ACCESS_2018_2882848 crossref_primary_10_1016_j_neuroimage_2018_04_039 crossref_primary_10_1002_aisy_201900048 crossref_primary_10_1016_j_compmedimag_2021_101971 crossref_primary_10_1109_TMI_2015_2442753 crossref_primary_10_1016_j_artmed_2019_03_004 crossref_primary_10_1016_j_neuroimage_2013_11_040 crossref_primary_10_1007_s10916_019_1385_3 crossref_primary_10_3103_S1060992X24700498 crossref_primary_10_2214_AJR_19_21927 crossref_primary_10_1016_j_media_2014_06_005 crossref_primary_10_1016_j_media_2016_06_009 crossref_primary_10_1186_s12911_017_0560_z crossref_primary_10_1109_TMI_2024_3514869 crossref_primary_10_1109_TIP_2019_2952079 crossref_primary_10_1109_JBHI_2018_2834551 crossref_primary_10_1002_mp_13245 crossref_primary_10_1002_jmri_24726 crossref_primary_10_1134_S0361768816060050 crossref_primary_10_1088_1361_6560_aa6520 crossref_primary_10_1016_j_compmedimag_2021_101982 crossref_primary_10_1109_TMI_2015_2470075 crossref_primary_10_1109_TPAMI_2017_2711020 crossref_primary_10_1118_1_4868455 crossref_primary_10_1016_j_media_2023_102869 crossref_primary_10_1109_TMI_2015_2508150 crossref_primary_10_1109_TMI_2017_2726112 crossref_primary_10_1109_ACCESS_2019_2945586 crossref_primary_10_3310_KPWQ4208 crossref_primary_10_1007_s11517_017_1732_9 crossref_primary_10_1109_JBHI_2022_3149114 crossref_primary_10_1016_j_media_2015_06_012 crossref_primary_10_1016_j_media_2016_04_009 crossref_primary_10_1007_s12021_019_09448_5 crossref_primary_10_1016_j_media_2015_08_009 crossref_primary_10_1016_j_patcog_2016_09_026 crossref_primary_10_1016_j_neucom_2024_129326 crossref_primary_10_1002_mrm_26631 crossref_primary_10_1118_1_4921366 crossref_primary_10_1016_j_media_2019_101591 crossref_primary_10_1016_j_media_2014_10_004 crossref_primary_10_1109_TMI_2017_2743464 crossref_primary_10_1016_j_scs_2020_102589 crossref_primary_10_1049_iet_ipr_2015_0408 crossref_primary_10_1016_j_mri_2021_02_003 crossref_primary_10_3390_brainsci10120974 crossref_primary_10_1109_TMI_2019_2962792 crossref_primary_10_1186_1532_429X_16_16 crossref_primary_10_3389_fradi_2023_1144004 crossref_primary_10_1016_j_neuroimage_2019_03_041 crossref_primary_10_1049_iet_ipr_2016_0988 crossref_primary_10_1155_2020_5047976 crossref_primary_10_1016_j_neuroimage_2018_04_001 crossref_primary_10_1080_21681163_2022_2125697 crossref_primary_10_1109_TMI_2023_3331982 crossref_primary_10_1109_TIM_2020_3003360 crossref_primary_10_1016_j_mri_2015_12_027 crossref_primary_10_1016_j_neuroimage_2015_12_009 crossref_primary_10_1109_TMI_2015_2453551 crossref_primary_10_1007_s11831_021_09667_7 crossref_primary_10_1088_2057_1976_abce16 crossref_primary_10_1002_ima_22301 crossref_primary_10_32604_csse_2022_022314 crossref_primary_10_1049_joe_2016_0288 crossref_primary_10_1109_TMI_2019_2905990 crossref_primary_10_1118_1_4945021 crossref_primary_10_3389_fonc_2021_674579 crossref_primary_10_1002_mp_15308 crossref_primary_10_1007_s10916_015_0329_9 crossref_primary_10_1007_s11517_018_1808_1 crossref_primary_10_1016_j_media_2014_09_005 crossref_primary_10_1109_TMI_2016_2589760 crossref_primary_10_1109_TMI_2019_2894322 crossref_primary_10_1007_s10334_015_0521_4 crossref_primary_10_1016_j_mri_2021_10_005 |
Cites_doi | 10.1016/S0002-9149(02)02381-0 10.1109/42.836373 10.1007/978-3-642-23626-6_79 10.1109/TMI.2007.906087 10.1016/j.media.2005.03.004 10.1109/TPAMI.2012.143 10.1109/TMI.2008.2011480 10.1109/TMI.2010.2047112 10.1016/j.neuroimage.2010.09.018 10.1016/j.acra.2012.03.022 10.1016/j.neuroimage.2005.02.018 10.1109/TMI.2009.2030799 10.1016/j.neuroimage.2011.09.012 10.1016/j.neuroimage.2009.02.018 10.1007/978-3-642-14366-3_10 10.1016/j.neuroimage.2011.09.002 10.1007/978-3-642-33530-3_8 10.1109/42.796284 10.1016/j.neuroimage.2011.01.006 10.1016/j.imavis.2010.01.001 10.1016/j.neuroimage.2006.05.061 10.1109/TMI.2002.804426 10.1016/j.media.2012.10.002 10.1109/TMI.2012.2236651 10.1016/j.media.2004.06.005 10.1007/s11263-009-0272-7 10.1109/TMI.2007.904681 10.1109/TMI.2010.2050897 10.1007/978-3-642-33530-3_10 10.1109/TMI.2009.2014372 10.1007/978-3-642-33454-2_53 10.1016/j.media.2009.10.001 10.1109/TMI.2011.2156806 10.1007/3-540-45631-7_39 10.1109/TMI.2009.2031063 10.1109/TMI.2003.815867 10.1002/hbm.22183 10.1109/TMI.2004.830803 10.1016/j.neuroimage.2009.10.026 10.1002/mrm.1910340618 10.1109/CVPR.2011.5995382 10.1109/TMI.2004.828354 10.1109/TMI.2010.2057442 10.1016/j.neuroimage.2004.10.017 10.1007/s11263-007-0052-1 10.1016/j.media.2010.12.004 10.1007/11784012_17 10.1016/j.neuroimage.2003.11.010 10.1109/ISBI.2012.6235691 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TMI.2013.2256922 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1315 |
ExternalDocumentID | 23568495 10_1109_TMI_2013_2256922 6494647 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: FS/11/22/28745 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c319t-4aeccad2a6e54a792f98be095cff832b92b3c4f08d0812d02cb095e6b13733573 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Jul 11 01:03:39 EDT 2025 Mon Jul 21 06:05:02 EDT 2025 Tue Jul 01 03:15:52 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Tue Aug 26 16:42:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-4aeccad2a6e54a792f98be095cff832b92b3c4f08d0812d02cb095e6b13733573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23568495 |
PQID | 1372702758 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TMI_2013_2256922 crossref_primary_10_1109_TMI_2013_2256922 pubmed_primary_23568495 proquest_miscellaneous_1372702758 ieee_primary_6494647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | fonov (ref39) 2012 ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 zhu (ref7) 2010; 29 suinesiaputra (ref10) 2011 ref52 ref55 ref54 risholm (ref46) 2010 ref17 van rikxoort (ref19) 2010; 14 ref16 radau (ref9) 2009 ref18 ref50 petitjean (ref11) 2012 ref45 ref48 risholm (ref47) 2010 ref42 ref41 ref44 ref43 ref49 ref8 tong (ref32) 2012 coup (ref25) 2010 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref1 d'agostino (ref53) 2006 ref24 ref23 ref26 ref20 wolz (ref38) 0 ref22 ref21 ref28 ref27 ref29 jolly (ref2) 2009 lynch (ref4) 2008; 27 chen (ref51) 2005 |
References_xml | – start-page: 10 year: 0 ident: ref38 publication-title: MICCAI 2012 – ident: ref57 doi: 10.1016/S0002-9149(02)02381-0 – ident: ref58 doi: 10.1109/42.836373 – ident: ref36 doi: 10.1007/978-3-642-23626-6_79 – ident: ref29 doi: 10.1109/TMI.2007.906087 – ident: ref52 doi: 10.1016/j.media.2005.03.004 – ident: ref35 doi: 10.1109/TPAMI.2012.143 – ident: ref21 doi: 10.1109/TMI.2008.2011480 – ident: ref8 doi: 10.1109/TMI.2010.2047112 – ident: ref26 doi: 10.1016/j.neuroimage.2010.09.018 – ident: ref12 doi: 10.1016/j.acra.2012.03.022 – start-page: 88 year: 2011 ident: ref10 article-title: Left ventricular segmentation challenge from cardiac MRI: A collation study publication-title: MICCAI Cardiac MR LV Segmentation Challenge – ident: ref50 doi: 10.1016/j.neuroimage.2005.02.018 – year: 2012 ident: ref11 article-title: Right ventricle segmentation in cardiac MRI: A MICCAI12 challenge publication-title: MICCAI 2012 Right Ventricle Segmentation Challenge Workshop – ident: ref6 doi: 10.1109/TMI.2009.2030799 – ident: ref40 doi: 10.1016/j.neuroimage.2011.09.012 – ident: ref17 doi: 10.1016/j.neuroimage.2009.02.018 – start-page: 126 year: 2005 ident: ref51 publication-title: Information Processing in Medical Imaging – start-page: 104 year: 2010 ident: ref46 article-title: Bayesian estimation of deformation and elastic parameters in non-rigid registration publication-title: Biomed Image Registrat doi: 10.1007/978-3-642-14366-3_10 – ident: ref48 doi: 10.1016/j.neuroimage.2011.09.002 – ident: ref33 doi: 10.1007/978-3-642-33530-3_8 – ident: ref54 doi: 10.1109/42.796284 – ident: ref34 doi: 10.1016/j.neuroimage.2011.01.006 – ident: ref1 doi: 10.1016/j.imavis.2010.01.001 – ident: ref13 doi: 10.1016/j.neuroimage.2006.05.061 – ident: ref56 doi: 10.1109/TMI.2002.804426 – ident: ref44 doi: 10.1016/j.media.2012.10.002 – ident: ref49 doi: 10.1109/TMI.2012.2236651 – start-page: 129 year: 2010 ident: ref25 publication-title: Medical Image Computing and Computer Assisted Intervention – ident: ref3 doi: 10.1016/j.media.2004.06.005 – ident: ref27 doi: 10.1007/s11263-009-0272-7 – volume: 27 start-page: 195 year: 2008 ident: ref4 article-title: Segmentation of the left ventricle of the heart in 3-<formula formulatype="inline"><tex Notation="TeX">${\rm D}+{\rm t}$</tex></formula> MRI data using an optimized nonrigid temporal model publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2007.904681 – year: 2009 ident: ref9 article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI publication-title: MICCAI Workshop Cardiac MR LV Seg Chall – year: 2009 ident: ref2 article-title: Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces publication-title: The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge – start-page: 554 year: 2010 ident: ref47 article-title: Summarizing and visualizing uncertainty in non-rigid registration publication-title: Proc Med Image Comput Computer-Assist Intervent – ident: ref23 doi: 10.1109/TMI.2010.2050897 – start-page: 63 year: 2012 ident: ref39 article-title: Multi-atlas labeling with population-specific template and non-local patchbased label fusion publication-title: Proc MICCAI 2012 Grand Challenge Workshop Multi-Atlas Label – ident: ref42 doi: 10.1007/978-3-642-33530-3_10 – ident: ref20 doi: 10.1109/TMI.2009.2014372 – year: 2012 ident: ref32 article-title: Segmentation of brain MR images via sparse patch representation publication-title: MICCAI Workshop Sparsity Techniques in Medical Imaging – ident: ref43 doi: 10.1007/978-3-642-33454-2_53 – volume: 14 start-page: 39 year: 2010 ident: ref19 article-title: Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus publication-title: Med Image Anal doi: 10.1016/j.media.2009.10.001 – ident: ref30 doi: 10.1109/TMI.2011.2156806 – ident: ref59 doi: 10.1007/3-540-45631-7_39 – volume: 29 start-page: 669 year: 2010 ident: ref7 article-title: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2009.2031063 – ident: ref55 doi: 10.1109/TMI.2003.815867 – ident: ref37 doi: 10.1002/hbm.22183 – ident: ref14 doi: 10.1109/TMI.2004.830803 – ident: ref18 doi: 10.1016/j.neuroimage.2009.10.026 – ident: ref45 doi: 10.1002/mrm.1910340618 – ident: ref31 doi: 10.1109/CVPR.2011.5995382 – ident: ref24 doi: 10.1109/TMI.2004.828354 – ident: ref22 doi: 10.1109/TMI.2010.2057442 – ident: ref16 doi: 10.1016/j.neuroimage.2004.10.017 – ident: ref28 doi: 10.1007/s11263-007-0052-1 – ident: ref5 doi: 10.1016/j.media.2010.12.004 – start-page: 136 year: 2006 ident: ref53 publication-title: 2nd Int Workshop Biomedical Image Registration doi: 10.1007/11784012_17 – ident: ref15 doi: 10.1016/j.neuroimage.2003.11.010 – ident: ref41 doi: 10.1109/ISBI.2012.6235691 |
SSID | ssj0014509 |
Score | 2.514617 |
Snippet | The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1302 |
SubjectTerms | Accuracy Algorithms Bayes methods Bayes Theorem Gaussian distribution Heart - anatomy & histology Heart Ventricles - anatomy & histology Humans Image Processing, Computer-Assisted - methods Image registration Image segmentation Magnetic Resonance Imaging - methods multi-atlas segmentation patch-based segmentation Probabilistic logic Vectors |
Title | A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images |
URI | https://ieeexplore.ieee.org/document/6494647 https://www.ncbi.nlm.nih.gov/pubmed/23568495 https://www.proquest.com/docview/1372702758 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LC8ZiQsS2U1tx1lzWypWLSKoKq3oLXL8aBHbLGqTCz-BX82M86BCgDglUZyHNWN7xjPzfQAvc0MQIE4kpsJBLqkAxCinEmUE9zYLOnVUnFx8VPsn8v1pdroBr8daGO99TD7zUzqNsXy3ti1tlc2U1FLJfBM20XHrarXGiIHMunQOToixqeJDSDLVs-PigHK4xBR1V2lOBDZcZGouiVTi2moU6VX-bmnGFWd5B4rhX7tEk6_Ttqmm9vtvMI7_25m7cLs3Pdmi05V7sOHrbbh1DZBwG24Ufah9B34s2OElDnZKniUsZ3aIk_Z58hZXPcc-mMqv2LKlrTZGdGorhsYvi9W8yaJBi5x98mcXfV1TzT5_ac7ZkT8bUXrxIuBnqMUbtvgVRGfNmu1FpbWsOGIHFzjdXd2Hk-W74739pCduSCyO6CaRhhTDcaN8Jk2uedDzyqMxZ0PAGaTSvBJWhnTu0CDhLuW2wpteVbsiFyLLxQPYqte1f0Ql5TY44VyWG2IgF3Mj7K7Pg8YDuqZhArNBgKXtUc2JXGNVRu8m1SVKvyTpl730J_BqfOJbh-jxj7Y7JLixXS-zCbwYdKTE0UghFlP7dXtVYgeowA-dsAk87JRnfHjQucd_fukTuMkj1QalAj-Freay9c_Q4Gmq51HTfwK5ffoy |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VInE8cLQFltNIvCCR3dR2nA1vS8VqFzZVVbaib5GvtFW3WdQmL_wEfjUzuagQIJ6SKM5hzTf22DPfDMCbWFMKECcCbVDJJRFAtHIqUFpwb6M8CR2Rk9N9NTuSn46j4w1413NhvPd18Jkf0mnty3drW9FW2UjJRCoZ34CbOO9HvGFr9T4DGTUBHZxyxoaKd07JMBkt0zlFcYkholclnErYcBGpsaSyEtfmo7rAyt9tzXrOmd6HtPvbJtTkfFiVZmi__5bI8X-78wDutcYnmzRoeQgbvtiCu9dSEm7BrbR1tm_Djwk7uER1p_BZyubMDnDYPg0-4Lzn2EIbv2LTijbbGBVUWzE0f1nN5w0mJdrk7Is_uWiZTQX7elaeskN_0ufpxYscP0Mt3rPJLzc6K9dsr4atZekhm1_ggHe1A0fTj8u9WdCWbggs6nQZSE3QcFwrH0kdJzxPxsajOWfzHMcQk3AjrMzDsUOThLuQW4M3vTK7IhYiisUj2CzWhX9CpHKbO-FcFGuqQS7GWthdH-cJHnBxmg9g1Akws21ecyqvscrq9U2YZCj9jKSftdIfwNv-iW9NTo9_tN0mwfXtWpkN4HWHkQz1kZwsuvDr6irDDhDFD5dhA3jcgKd_uMPc0z-_9BXcni3TRbaY739-Bnd4XXiDAoOfw2Z5WfkXaP6U5mWN-p_tuf18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Probabilistic+Patch-Based+Label+Fusion+Model+for+Multi-Atlas+Segmentation+With+Registration+Refinement%3A+Application+to+Cardiac+MR+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wenjia+Bai&rft.au=Wenzhe+Shi&rft.au=O%27Regan%2C+D.+P.&rft.au=Tong+Tong&rft.date=2013-07-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=32&rft.issue=7&rft.spage=1302&rft.epage=1315&rft_id=info:doi/10.1109%2FTMI.2013.2256922&rft_id=info%3Apmid%2F23568495&rft.externalDocID=6494647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |